
Introduction:

Annually, roughly 32,000 Australians suffer cardiac arrest, 80% of those happen outside
of a hospital and only 10% of those people survive. In many cases there are no
noticeable warning signs and early detection of heart problems can save thousands of
lives. With technology becoming more accurate and accessible, making a bracelet that
monitors heart rate can assist in detecting anomalies and alert users to seek medical
attention which can prevent serious medical emergencies at a much cheaper price than
other products such as the Apple Watch or Fitbit.

Objective:

This project aims to design a wearable system that uses a pulse sensor and software
integration to monitor heart rate, detect abnormal readings, and deliver real time health
alerts through a mobile app. The goal is to assess whether low cost technology can
provide reliable early detection of irregular heart rhythms.

Motivation:

I want to make an affordable heart rate tracking medical bracelet to help people stay
safe, healthy and additionally catch heart problems early. Many people don’t know they
have a heart issue until it’s too late. This device could alert them in time to get help and
possibly save the lives of many people who would have died without the correct
medical attention/advice.

Software/Programming languages used:

Arduino- C++ (Reads heart rate through the analog input and sends it over serial)

IDLE- Python (Reads the serial data and sends it through a WebSocket server)

X Code- Swift (Receives data and outputs it for the users.)

Required parts and software to run the app:

Python IDLE https://www.python.org/downloads/

Arduino https://www.arduino.cc/en/software/

X Code http://apps.apple.com/us/app/xcode/id497799835?mt=12/

https://www.python.org/downloads/
https://www.arduino.cc/en/software/
http://apps.apple.com/us/app/xcode/id497799835?mt=12/

*This is just a prototype of what the bracelet’s intended function is and not a final
product.

Part Image
Circuit board (Arduino Uno)

Pulse Sensor Analog Signal Output

Cords (To connect to laptop without
Bluetooth)

Laptop (To run the code, collect data, and
act as a server)

Phone (to run the app) *No photo
Wiring Image
This sensor has three wires that need to
be connected in specific places to work.

The first wire has a (-) next to it. Which is
the yellow wire. This one needs to be
connected in GND which is short for
ground. Which serves as a zero-voltage
reference point in a circuit.
The second wire has a (+) next to it.
(Which is the green one) This wire
requires to be connected in 5V which is a
controlled 5-volt power source that can
be used to power the board and external
components.

This last wire has an (S) next to it. (Which
is the blue one) This wire connects to A0
which is the first analogue input pin
meaning it can measure voltage between
0-5 volts on the Arduino UNO.

Photoplethysmography:

The pulse sensor used in this project is based on a technology called
Photoplethysmography (PPG) which is a non-invasive optical method used to detect
blood volume changes in the microvascular tissue.

It works by shining a small light-emitting diode (LED) into the skin. As the heart pumps
blood, the volume of blood in the capillaries changes with each heartbeat. The
photodetector next to the LED measures how much light is absorbed or reflected by the
blood. More blood means more light absorbed while less blood means more light
reflected. PPG devices use green LEDs because green light is absorbed well by blood,
especially in the skin’s tiny blood vessels. This helps the device easily detect a
heartbeat by measuring changes in blood flow. Also, green light works better on the
wrist and gives a clearer signal, even when you move.

These changes produce a waveform that matches the rhythm of your heartbeat. The
Arduino reads this signal as an analog signal, and with proper processing the time
between each pulse (Inter-Beat Interval) can be used to calculate Beats Per Minute
(BPM). This type of sensor is used in smartwatches, medical monitors, and fitness
devices, and is effective because it’s simple and inexpensive.

WebSocket:

From the sensor to the app all of this functions through the use of a WebSocket. A
WebSocket is a way for the client and the server to communicate to each other in real
time. Unlike a normal Hypertext Transfer Protocol (HTTP) which tends to be short-lived

and one way, WebSockets keep the connection open to send or receive messages or

inputs from both sides as long as the program is running.

In this scenario the Arduino reads the pulse sensor and sends the value over serial
(USB). Then the python script running on the computer reads the serial data and acts as
a WebSocket server. The X-Code app connects to the WebSocket server using Swifts
URLSessionWebSocketTask. So, when the Arduino sends over a sensor value, the
Python server relays the data to the app in real time through WebSocket. Then the app
will display and trigger alerts if the detected BPM is abnormal.

*Image generated by ChatGPT

Testing:

The C++ code for the sensor was developed to verify the hardware is functioning
properly. It began with a simple program designed to read the sensor's output. The
output reflects what the sensor is detecting in real time. This basic code provides a
straightforward way to confirm that the sensor is working correctly.

Code is below

// means annotations

#define sensor A0 // Pulse sensor is connected to the analog pin A0 of the Arduino

void setup() {
 Serial.begin(9600); // Initialize serial communication at 9600 baud rate for data transfer
 delay(1000); // Wait for 1000 milliseconds (1 second) to ensure the Serial Plotter is ready
}

void loop() {
 int Svalue = analogRead(sensor); // Read the current analog value from the pulse sensor on pin A0
 Serial.println(Svalue); // Print the actual sensor value (between 0 and 1023) to the Serial Plotter
 delay(500); // Wait for 500 milliseconds before reading the sensor value again
}

This code allows the monitoring of raw analog values from the pulse sensor helping
observe the sensor’s response to a pulse. By these values being displayed in the Serial
plotter, it makes it easy to analyse the sensor’s behaviour in real time. The delay at the
end of the code ensures that the data is not printed too quickly.

Example output:

*The output is not perfect due to background noise the sensor could pick up.

Converting Sensor Value to Heart Rate:

Programming, Apps &

Robotics

Year 9-10

Madi Lucey

Pembroke School - Middle

School

At the moment there is a code that gives the sensor value but not the heart rate. To
convert the sensor value to a BPM value this equation has to be plugged into the code.

The IBI is the time in milliseconds between two heart beats and there are 60,000
milliseconds in a minute. So, by dividing 60,000 by the time between two heart beats
you would get the average beats per minute.

Updated Arduino code with BPM conversions:

#define sensor A0 // Pulse sensor connected to analog pin A0

// Variables for beat detection
int threshold = 550; // Signal level threshold to detect a pulse
int sensorValue = 0; // Current analog reading from the pulse sensor
int lastSensorValue = 0; // Previous sensor reading, used to detect rising edges
bool pulseDetected = false; // Flag to make sure each pulse is counted once

unsigned long lastBeatTime = 0; // Timestamp of the last detected beat in milliseconds
unsigned long currentTime = 0; // Current time (in milliseconds)
int bpm = 0; // Calculated Beats Per Minute (BPM)

void setup() {
 Serial.begin(9600); // Initialize serial communication at 9600 baud for debugging and output
 delay(1000); // Short delay to allow the sensor to stabilize
}

void loop() {
 sensorValue = analogRead(sensor); // Read the current sensor value from analog pin A0

 currentTime = millis(); // Get the current elapsed time since program started in milliseconds

 // Detect rising edge when sensor signal crosses the threshold from below (start of a heartbeat)
 if (sensorValue > threshold && lastSensorValue <= threshold && !pulseDetected) {
 // Calculate the time interval between this beat and the previous beat
 unsigned long beatInterval = currentTime - lastBeatTime;
 lastBeatTime = currentTime; // Update last beat timestamp to now

 // Filter out unrealistic intervals to avoid false BPM calculations
 if (beatInterval > 300 && beatInterval < 2000) {
 bpm = 60000 / beatInterval; // Convert interval (ms) to beats per minute
 }

 pulseDetected = true; // Mark pulse as detected to avoid multiple counts for same beat
 }

 // Reset pulseDetected flag when sensor signal drops below threshold (end of heartbeat)
 if (sensorValue < threshold) {
 pulseDetected = false;
 }

 lastSensorValue = sensorValue; // Store current sensor value for next loop iteration

 Serial.println(bpm); // Output BPM value to serial monitor

 delay(100); // Delay to read sensor approximately 10 times per second (for better time resolution)
}

Python Server: # means annotations

The purpose of the python server is to act as a bridge between the Arduino and X-Code
app through serial port.

Code below:

import asyncio # Imports Python's asyncio library for asynchronous I/O operations

import serial # Imports pySerial to communicate with serial ports (Arduino)

import websockets # Imports the websockets library for handling WebSocket connections

SERIAL_PORT = '/dev/cu.usbserial-120' # The serial port connected to the Arduino

BAUDRATE = 9600 # The baud rate for serial communication

PORT = 6789 # Port number for the WebSocket server

Coroutine to handle data from serial to websocket

async def serial_to_websocket(websocket, path):

 print(f"Client connected: {path}") # Logs the WebSocket client connection

 try:

 ser = serial.Serial(SERIAL_PORT, BAUDRATE, timeout=1)# Open the serial port

 print(f"Serial port opened: {SERIAL_PORT}")

 while True:

 if ser.in_waiting > 0: # If data is waiting in the serial buffer:

 line = ser.readline().decode('utf-8').strip() # Read and decode the line

 await websocket.send(line) # Send the line to the WebSocket client

 await asyncio.sleep(0.1) # Small delay to avoid hogging CPU

 except Exception as e:

 print(f"Error: {e}") # Print any errors that occur

 finally:

 ser.close() # Ensure the serial port is closed

Main coroutine to start the WebSocket server

async def main():

 async with websockets.serve(serial_to_websocket, "0.0.0.0", PORT): # Bind server to all interfaces

 print(f"WebSocket server running on port {PORT}")

 await asyncio.Future() # Run forever (acts like while True but async-safe)

Run the main function if the script is executed directly

if __name__ == "__main__":

 asyncio.run(main()) # Launch the asyncio event loop and run the main function

X-Code:

After the code for the hardware to function is developed, I began creating the app. To
start I made a simplistic login page with the help of books and YouTube tutorials (found
in the sources.) The login page leads the user to the main app after correct credentials
are put in.

Login Page (Content View) // means annotations

import SwiftUI // Imports the SwiftUI framework for building user interfaces.

struct ContentView: View { // Defines the main view of the application
 // State variables that SwiftUI monitors for changes
 @State private var username: String = "" // Holds the username
 @State private var password: String = "" // Holds the password
 @State private var isLoggedIn = false // Tracks whether the user is successfully logged in
 @State private var showingAlert = false // Controls the display of the alert dialog
 @State private var alertMessage = "" // Message to display in the alert

 var body: some View {
 NavigationStack { // A container that manages navigation between views
 VStack(spacing: 20) { // Vertically stacks elements with 20 points spacing

 // The title of the login page
 Text("Login")
 .font(.largeTitle) // Sets the font size to large
 .fontWeight(.bold) // Makes the text bold

 // Username input field
 TextField("Username", text: $username) // A text input field connected to the username variable
 .autocapitalization(.none) // Prevents auto-capitalization
 .padding() // Adds padding inside the text field
 .background(Color(.secondarySystemBackground)) // Makes the background light grey
 .cornerRadius(8) // Rounds the corners of the box

 // Password input field
 SecureField("Password", text: $password) // A secure text field that hides the input
 .padding()
 .background(Color(.secondarySystemBackground))
 .cornerRadius(8)

 // Login button
 Button(action: {
 loginUser(username: username, password: password) // Calls loginUser when clicked
 }) {
 Text("Enter")
 .frame(maxWidth: .infinity) // Makes the button expand horizontally
 .padding()
 .background(Color(.sRGB, red: 1.0, green: 0.62, blue: 0.72, opacity: 1.0)) // light pink
 .foregroundColor(.white) // White text color
 .cornerRadius(8)
 }

 // Hidden navigation link that activates when isLoggedIn becomes true
 NavigationLink(
 destination: DashboardView(), // Navigates to the DashboardView upon a successful login
 isActive: $isLoggedIn,
 label: { EmptyView() } // Doesn't display a visual element
)

 Spacer() // Pushes everything up to the top
 }
 .padding() // Adds padding around the whole VStack
 .alert(isPresented: $showingAlert) { // Shows an alert if showingAlert is true
 Alert(
 title: Text("Login Failed"),
 message: Text(alertMessage),
 dismissButton: .default(Text("OK"))
)
 }
 }
 }

 // Function to handle login logic
 func loginUser(username: String, password: String) {
 if username == "admin" && password == "test123" {
 isLoggedIn = true // Navigates to DashboardView if credentials match
 } else {
 alertMessage = "Invalid username or password." // Shows error message
 showingAlert = true // Triggers alert display
 }
 }
}

Main App (Dashboard View)

import SwiftUI // Imports SwiftUI for building UI components
import UserNotifications // Imports framework for handling notification permissions

// Main view for displaying a heart rate monitoring dashboard
struct DashboardView: View {
 // Observed object that manages WebSocket connection and BPM data updates
 @StateObject private var socketManager = WebSocketManager()

 var body: some View {
 ZStack {
 // Sets a pink background color that covers the entire screen
 Color(red: 1.0, green: 0.62, blue: 0.72)
 .ignoresSafeArea() // Ensures background goes under system UI elements

 VStack(spacing: 30) { // Vertical layout with spacing between components
 Spacer() // Pushes the content downward for layout balance

 // Welcome header section
 VStack(spacing: 10) {
 Text("Welcome, admin!") // Greeting text
 .font(.largeTitle)
 .fontWeight(.bold)
 .foregroundColor(.white) // White text for visibility

 Text("You're now logged in") // Subtext under greeting
 .font(.title2)

 .foregroundColor(.white.opacity(0.8)) // Slightly transparent
 }
 .padding() // Adds padding inside the greeting box
 .frame(maxWidth: .infinity) // Stretches full width
 .background(RoundedRectangle(cornerRadius: 20).fill(Color.white.opacity(0.1))) // Semi-transparent background with rounded corners
 .padding(.horizontal) // Padding on the sides

 // BPM and health suggestion section
 VStack(spacing: 15) {
 // Displays the current BPM value from WebSocket
 Text("Current BPM: \(socketManager.bpm)")
 .font(.title)
 .foregroundColor(.black)
 .fontWeight(.bold)
 .padding()
 .frame(maxWidth: .infinity)
 .background(RoundedRectangle(cornerRadius: 20).fill(Color.white.opacity(0.5))) // Light background behind BPM
 .padding(.horizontal)

 // Horizontal visual separator
 RoundedRectangle(cornerRadius: 25)
 .fill(Color.white)
 .frame(height: 5)

 Text("Normal BPM: 60–100") // Reference range
 .font(.title3)
 .foregroundColor(.white)

 // Optional health advice based on BPM value
 if let bpmInt = Int(socketManager.bpm) {
 if bpmInt < 40 {
 // If BPM is below 40
 Text("Low Heart Rate") // Warning messages for low BPM
 Text("Suggestion: Sit or lay down and drink water")
 Text("If still feeling dizzy consult a medical professional.")
 .font(.title3)
 .foregroundColor(.red)
 .fontWeight(.semibold)
 } else if bpmInt > 110 {
 // If BPM is above 110
 Text("High Heart Rate") // Warning message for high BPM
 Text("Suggestion: Sit or lay down")
 Text("If still experiencing chest pain or shortness of breath consult a medical professional")
 .font(.title3)
 .foregroundColor(.red)
 .fontWeight(.semibold)
 } else {
 // If BPM is in a normal range
 Text("BPM should be on the lower side while resting.")
 Text("And higher while exercising")
 .font(.caption)
 .foregroundColor(.white)
 }
 }

 // Notification prompt text
 Text("Turn on notifications")
 .font(.title2)
 .fontWeight(.bold)
 .foregroundColor(.white)

 // Navigation to an additional info view
 NavigationLink(destination: InfoView()) {
 Text("Information (click here)")
 .padding()
 .frame(maxWidth: .infinity)
 .background(Color(red: 2.0, green: 0.62, blue: 0.72)) // Brighter pink
 .foregroundColor(.white)
 .fontWeight(.bold)
 .cornerRadius(10)
 }
 .padding(.horizontal)
 }
 .padding() // Padding around the entire BPM box
 .frame(maxWidth: .infinity)
 .background(RoundedRectangle(cornerRadius: 20).fill(Color.white.opacity(0.1))) // Semi-transparent rounded background
 .padding(.horizontal)

 Spacer() // Pushes everything upward for symmetry

 }
 }
 .navigationTitle("Home") // Title in the navigation bar
 .onAppear {
 // Requests notification permissions on first load
 UNUserNotificationCenter.current().requestAuthorization(options: [.alert, .sound]) { granted, _ in
 print("Notification permission: \(granted)")
 }
 socketManager.connect() // Connect to WebSocket for real-time updates
 }
 .onDisappear {
 socketManager.disconnect() // Clean up connection when view disappears
 }
 }
}

WebSocket Manager:

import Foundation
import UserNotifications // For sending local notifications

// ObservableObject allows this class to be used with SwiftUI views that observe it
class WebSocketManager: ObservableObject {
 @Published var bpm: String = "--" // Publishes changes to the heart rate string to update UI

 private var task: URLSessionWebSocketTask? // Manages the WebSocket connection
 private var isAbnormal = false // Tracks whether the BPM is outside the normal range
 private var alertTimer: Timer? // Timer that periodically checks for abnormal BPM

 // Establishes a WebSocket connection
 func connect() {
 // Ensure the WebSocket URL is valid
 guard let url = URL(string: "ws://**********:6789") else { // censored IP for security reasons
 print("Invalid WebSocket URL")
 return
 }

 // Create and start a WebSocket task
 let session = URLSession(configuration: .default)
 task = session.webSocketTask(with: url)
 task?.resume()

 print("WebSocket connected to \(url)")

 startAlertTimer() // Start periodic abnormality check
 receive() // Begin listening for incoming messages
 }

 // Disconnects the WebSocket and stops the timer
 func disconnect() {
 task?.cancel(with: .goingAway, reason: nil) // Close the connection
 alertTimer?.invalidate() // Stop the alert timer
 print("WebSocket disconnected")
 }

 // Continuously receives messages from the WebSocket server
 private func receive() {
 task?.receive { [weak self] result in
 DispatchQueue.main.async {
 switch result {
 case .success(let message):
 switch message {
 case .string(let text): // Received a text message
 print("Received text: \(text)")
 // Show "Connecting..." while no real data is coming in
 self?.bpm = text == "0" ? "Connecting..." : text
 self?.checkAbnormal(bpm: text) // Check if the BPM is abnormal
 case .data(let data): // Received binary data (not used)
 print("Received binary data: \(data)")
 @unknown default: // Fallback for future message types
 print("Unknown message type received")
 }
 case .failure(let error): // WebSocket error
 print("WebSocket error: \(error)")
 }

 // Recursively listen for the next message
 self?.receive()

 }
 }
 }

 // Determines whether the current BPM is abnormal (too low or too high)
 private func checkAbnormal(bpm: String) {
 guard let value = Int(bpm) else { return }
 isAbnormal = value < 40 || value > 100 // Define abnormal range
 }

 // Starts a timer that checks the BPM every 30 seconds and sends a notification if abnormal
 private func startAlertTimer() {
 alertTimer = Timer.scheduledTimer(withTimeInterval: 30.0, repeats: true) { [weak self] _ in
 guard let self = self else { return }
 if self.isAbnormal, let currentBpm = Int(self.bpm) {
 self.sendNotification(title: "BPM Alert", body: "Heart rate is \(currentBpm) BPM") // Notification message
 }
 }
 }

 // Sends a local notification using the UserNotifications framework
 private func sendNotification(title: String, body: String) {
 let content = UNMutableNotificationContent()
 content.title = title
 content.body = body
 content.sound = .default // Use default system sound

 // Trigger notification immediately
 let request = UNNotificationRequest(
 identifier: UUID().uuidString,
 content: content,
 trigger: nil
)

 // Schedule the notification
 UNUserNotificationCenter.current().add(request) { error in
 if let error = error {
 print("Notification error: \(error)")
 } else {
 print("Notification scheduled")
 }
 }
 }
}

Information Page (infoview)

import SwiftUI // Imports the SwiftUI framework for building user interfaces.

struct InfoView: View { // Main view for the information page
 @Environment(\.presentationMode) var presentationMode

 var body: some View {
 ZStack {
 Color(red: 1.0, green: 0.62, blue: 0.72) // pink colour
 .ignoresSafeArea() // makes the whole background pink

 VStack(spacing: 20) {
 Text("About to BeatSync") // title
 .font(.largeTitle) // font
 .foregroundColor(.white) // text colour
 .bold()
 .padding()

 Text("Each year, approximately 32,000 Australians suffer a cardiac arrest. Alarmingly, 80% of these events occur outside of hospital environments,
and only about 10% of those affected survive. In many cases, there are no warning signs, cardiac arrest can strike without notice. Early detection of heart
irregularities is crucial and could save thousands of lives. As wearable technology becomes more accurate and accessible, it presents an opportunity to offer
a life-saving tool at a fraction of the cost of premium products like the Apple Watch or Fitbit.") // information paragraph 1
 .multilineTextAlignment(.center) // aligns text to the centre
 .foregroundColor(.white)
 .padding()
 .frame(maxWidth: .infinity)
 .background(RoundedRectangle(cornerRadius: 20).fill(Color.white.opacity(0.1))) // Rounded box

 Text("This project aims to design and build an affordable medical bracelet that connects to a mobile application. The bracelet will measure heart
rate in real time, detect abnormalities, and provide immediate feedback to the user. By identifying unusual heart activity early, the device can prompt users to
seek medical attention before the situation becomes critical. This proactive approach to heart health could significantly reduce emergency cases and improve
survival rates.") // information paragraph 2
 .multilineTextAlignment(.center)

 .foregroundColor(.white)
 .padding()
 .frame(maxWidth: .infinity)
 .background(RoundedRectangle(cornerRadius: 20).fill(Color.white.opacity(0.1))) // Rounded box

 Spacer()
 }
 .padding()
 .navigationTitle("Info") // page title
 .navigationBarBackButtonHidden(true) // Hide default back button
 .toolbar {
 ToolbarItem(placement: .navigationBarLeading) {
 Button(action: {
 presentationMode.wrappedValue.dismiss()
 }) {
 HStack {
 Image(systemName: "chevron.left")
 Text("Home") // new home button because default one does not work
 }
 }
 }
 }
 }
 }
}

Testing:

Testing the heart rate monitor in comparison to an Apple Watch was the best way to see
if the sensor is properly functioning. This was chosen because they both use PPG to
measure bpm, and they use green LED’s making them more alike.

Trials Apple watch BPM BeatSync BPM
1 78 72
2 76 74
3 86 99

The results show that BeatSync produced readings within a close range of the Apple
Watch in two out of three trials, with a larger deviation in the third. This variation could
be due to sensor noise, movement, or differences in signal processing. Overall, the
results suggest that the prototype is capable of providing reasonably accurate BPM
measurements, supporting its use as a low-cost heart monitoring solution.

Summary:

This project, BeatSync is an engineered solution to the real-world problem of
undetected cardiac events. It combines hardware and software systems to create an
affordable, wearable heart rate monitor that detects abnormal pulse patterns and
delivers real-time alerts through a mobile application. The system architecture consists
of an Arduino-based pulse sensor, a Python WebSocket server for live data
transmission, and a SwiftUI iOS app that processes and displays BPM with health
recommendations.

The project applies core engineering principles problem-solving, iterative prototyping,
system integration, and testing to deliver a reliable and scalable health technology
solution. It showcases the use of threshold-based signal detection, serial
communication, and cross-platform software development. BeatSync demonstrates
strong computational thinking, user-centered design, and a focus on practical
outcomes.

The code for the Arduino, Python WebSocket server, and SwiftUI app was scripted by
me, without copying full templates or using AI. I used documentation, forums, video
tutorials, and past experiences to learn how to build each part.

Video:

Sources

https://www.heartfoundation.org.au/your-heart/cardiac-arrest

https://srituhobby.com/how-to-use-the-heart-pulse-sensor-with-arduino-heart-pulse-
monitoring-system/

https://learn.sparkfun.com/tutorials/what-is-an-arduino/whats-on-the-
board#:~:text=GND%20(3)%3A%20Short%20for,used%20to%20ground%20your%20cir
cuit.

https://docs.arduino.cc/learn/electronics/power-pins/

https://forum.arduino.cc/t/variable-int-with-a0-instead-of-a-number/681553

https://lastminuteengineers.com/pulse-sensor-arduino-tutorial/

https://www.youtube.com/watch?v=ZOllXMxLRqc

https://www.youtube.com/watch?v=BLrHTHUjPuw.

Feiler, J. (2014). IOS app development for dummies. Hoboken, Nj: John Wiley & Sons.

https://forum.arduino.cc/t/arduino-python-websocket/516034

https://www.heartfoundation.org.au/your-heart/cardiac-arrest
https://srituhobby.com/how-to-use-the-heart-pulse-sensor-with-arduino-heart-pulse-monitoring-system/
https://srituhobby.com/how-to-use-the-heart-pulse-sensor-with-arduino-heart-pulse-monitoring-system/
https://learn.sparkfun.com/tutorials/what-is-an-arduino/whats-on-the-board#:~:text=GND%20(3)%3A%20Short%20for,used%20to%20ground%20your%20circuit
https://learn.sparkfun.com/tutorials/what-is-an-arduino/whats-on-the-board#:~:text=GND%20(3)%3A%20Short%20for,used%20to%20ground%20your%20circuit
https://learn.sparkfun.com/tutorials/what-is-an-arduino/whats-on-the-board#:~:text=GND%20(3)%3A%20Short%20for,used%20to%20ground%20your%20circuit
https://docs.arduino.cc/learn/electronics/power-pins/
https://forum.arduino.cc/t/variable-int-with-a0-instead-of-a-number/681553
https://lastminuteengineers.com/pulse-sensor-arduino-tutorial/
https://www.youtube.com/watch?v=ZOllXMxLRqc
https://www.youtube.com/watch?v=BLrHTHUjPuw

https://websockets.readthedocs.io/en/10.1/

https://www.youtube.com/watch?v=ZzaPdXTrSb8

https://en.wikipedia.org/wiki/Baud

https://www.swiftyplace.com/blog/swiftui-font-and-texts

https://www.youtube.com/watch?v=Fo1A36RsoCI

https://pulsesensor.com/pages/getting-advanced

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

https://www.ramotion.com/blog/what-is-websocket/

https://www.youtube.com/watch?v=8ARodQ4Wlf4

https://stackoverflow.com/questions/56443535/swiftui-text-alignment

https://en.wikipedia.org/wiki/Photoplethysmogram

https://www.ansys.com/blog/modeling-human-skin-and-optical-heart-rate-sensors

https://stackoverflow.com/questions/56571349/custom-back-button-for-
navigationviews-navigation-bar-in-swiftui

https://www.youtube.com/watch?v=ZzaPdXTrSb8
https://en.wikipedia.org/wiki/Baud
https://www.youtube.com/watch?v=Fo1A36RsoCI
https://pulsesensor.com/pages/getting-advanced
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://www.ramotion.com/blog/what-is-websocket/
https://www.youtube.com/watch?v=8ARodQ4Wlf4
https://www.ansys.com/blog/modeling-human-skin-and-optical-heart-rate-sensors

