

Programming, Apps &

Robotics

Year 7-8

Oscar Zhou

Pembroke School - Middle

School

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

 1

Improving the accuracy
and efficiency of detecting
AI-generated text

Aim
AI-generated text is becoming increasingly common, particularly in the academic world. Students,
researchers, institutions, and everyday individuals need to be able to quickly and efficiently identify AI-
generated text that they encounter in today’s world. This way, they can make informed decisions
regarding whether to trust a source online or to see if a section of text is genuinely written by a real
person. Services like Google’s Gemini, OpenAI’s ChatGPT, DeepSeek’s R1 Model, and Anthropic’s
Claude are all based on the Large Language Model architecture (LLM). Due to their nature, they have
several fundamental weaknesses, the most concerning of which is their inherent susceptibility to
hallucination. According to a study led by Myra Cheng at Stanford University, ‘people view AI as
increasingly human-like and warm.’ People are starting to trust AI, and thus the content that is
generated by it. But with AI models hallucinating and providing users with incorrect facts, being able to
identify AI-generated text easily is becoming increasingly relevant. This project aims to provide users
with a secure, fast, and accurate tool to quickly detect AI-generated text and provide them with
linguistic insights at a glance.

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

2

Goals
Before starting, a set of goals and requirements should be outlined for the final program. The program
must:

• Be able to run solely on the user’s device without communicating with third parties and without
sending any data through an internet connection. Privacy is key, and keeping all data on-device
ensures the user’s privacy. For this project, the user’s device should be an average laptop with
a minimum of 8GB of RAM with integrated graphics or a graphics card. Examples include all
Apple Silicon laptops and all laptops capable of running Windows 11.

• Be accurate and have a >90% accuracy in differentiating between AI and human text on a
balanced subset of the training split included in the RAID project. View the project’s GitHub
repository here - https://github.com/liamdugan/raid. This will enable easy comparison with
other commercially available or open-source programs.

Method

Logit-based Detection

To build a system capable of detecting text written by LLMs, it is crucial to understand how LLMs work.
A popular paper explaining the inner workings of LLMs that has received over 1171 citations, according
to Google Scholar, is ‘A Comprehensive Overview of Large Language Models’ by Naveed et al. At their
core, LLMs work by predicting the next token from any sequence of previous tokens. They are
fundamentally statistical models, and they predict the probability of a token being the next token in a
sequence. Figure 1 below shows an example input and output for the prompt – ‘The quick brown fox
jumps over the lazy’ being passed into an LLM, which is represented by the function LLM().

Figure 1 - A image showing how an LLM makes predictions.

https://github.com/liamdugan/raid

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

3

Now that the underlying structure of an LLM has been outlined, taking advantage of it is crucial.
Popular models like ChatGPT from OpenAI and Gemini from Google are all trained on datasets with
considerable similarities. This means that their statistical outputs should share similarities as well. So,
logically, AI text would likely have most of the tokens ranked within the top few of the probability
rankings. Human text, however, doesn’t follow a set-in algorithm and shouldn’t be as predictable for an
AI model. Taking advantage of this, a program can be constructed to follow this process. Figure 2
below shows a plan for this process. The LLM is given a part of the text as input up to the token 𝑛 in
the sequence and provides the logit ranking for the token 𝑛 + 1.

Figure 2 - A diagram showing a logit-based AI-generated text detection system.

Now, the final decision to make is to decide what LLM is used in the detection system. Since this
system needs to comfortably fit on a system with 8GB of RAM, this means that there are significant
size restraints that need to be met by the LLM. Token prediction accuracy is not the main goal of this
task; the goal is to have similar tokens present in the rankings for each token prediction. The text
generated by the LLM doesn’t need to make sense; it just needs to include the tokens that a larger LLM
might predict somewhere in the top 10 tokens ranked by logits. Additionally, the main factor that backs
this method is the fact that most LLMs are trained on similar data, so it would make sense to choose
models that are trained by companies like OpenAI or Google, or models that are distilled from their
models. Models that have under 100 million parameters would likely suffice, whilst also offering

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

4

incredible power and compute efficiency. Table 1 below shows some LLMs that could be used for this
and are open source.

Table 1 - Open-source LLMs and their characteristics

Model Params Source Trained On

DistilGPT2 82M OpenAI WebText

TinyStories-65M 65M OpenAI Synthetic stories

Phi-1.5 60M Microsoft Textbook-like

GPT-Neo-125M 125M EleutherAI The Pile

As the biggest deciding factor for the performance of this method is the dataset used to train the
model, models that utilise common or large datasets pose an advantage. Additionally, models trained
by companies like Microsoft or OpenAI, which dominate the LLM scene, have a greater chance of
sharing characteristics with the larger models developed by these companies. DistilGPT2 stands out as
the only model from this list that is distilled from a larger model – in this case, GPT-2, the foundational
model for both GPT-3 and GPT-4 – and is also trained on WebText, one of the largest and most used
datasets for LLMS. DistilGPT2 also fits well within the 100 million parameter constraint, meaning it
should run without any issues.

The next step is to implement this process in code. Python is a well-established programming language
in the AI industry and has a great amount of support for various AI model architectures. Below is a
Python code snippet that implements this.

class LogitDetector:

 def __init__(self, model_name, device=DEVICE):

 print(f"Initializing LogitDetector with '{model_name}'...")

 self.device = device

 self.model = AutoModelForCausalLM.from_pretrained(model_name).to(self.device)

 self.tokenizer = AutoTokenizer.from_pretrained(model_name)

 self.sent_tokenizer = nltk_load('tokenizers/punkt/english.pickle')

 self.model.eval()

This part is simple and
sets some of the

variables and settings
and loads the LLM into

memory.

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

5

 print("LogitDetector initialized.")

 def _get_top_k_logits(self, input_ids_batch, top_k):
 with torch.no_grad():

 logits = self.model(input_ids_batch).logits

 last_token_logits = logits[:, -1, :]

 return torch.topk(last_token_logits, top_k, dim=-1).indices

 def _create_sentence_chunks(self, text, all_flagged_indices):

 flagged_indices_set = set(all_flagged_indices)

 sentence_spans = self.sent_tokenizer.span_tokenize(text)

 chunks = []

 global_token_offset = 0

 for start, end in sentence_spans:

 sentence_text = text[start:end]

 if not sentence_text.strip(): continue

 sentence_token_ids = self.tokenizer.encode(sentence_text, add_special_tokens=False)

 num_tokens_in_sentence = len(sentence_token_ids)

 if num_tokens_in_sentence == 0: continue

 flagged_count = sum(1 for i in range(num_tokens_in_sentence) if (global_token_offset + i) in

flagged_indices_set)

 ai_percentage = (flagged_count / num_tokens_in_sentence) * 100

 sentence_type = 'AI' if ai_percentage > 60 else 'Human'

 chunks.append({"text": sentence_text, "type": sentence_type})

 global_token_offset += num_tokens_in_sentence

 return chunks

 def detect(self, text, top_k=10, batch_size=32, context_window=10):

 all_tokens = self.tokenizer.encode(text, add_special_tokens=False)

 if len(all_tokens) <= context_window:

 return [{"text": text, "type": "Human"}]

 input_sequences, target_tokens = [], []

 for i in range(len(all_tokens) - context_window):

 input_sequences.append(all_tokens[i : i + context_window])

 target_tokens.append(all_tokens[i + context_window])

 all_flagged_indices = []

 for i in tqdm(range(0, len(input_sequences), batch_size), desc="Logit Analysis", leave=False):

 batch_start, batch_end = i, i + batch_size

 input_ids_batch = torch.tensor(input_sequences[batch_start:batch_end]).to(self.device)

 top_k_preds_batch = self._get_top_k_logits(input_ids_batch, top_k)

 for j, top_k_preds in enumerate(top_k_preds_batch):

 if target_tokens[batch_start + j] in top_k_preds:

 all_flagged_indices.append(batch_start + j + context_window)

 return self._create_sentence_chunks(text, all_flagged_indices)

The no_grad() function in torch disables gradient
calculation for efficiency. Then the self.model() function
gets the raw output in logits. This logits tensor is then

cleaned and returned with just the top_k by looking across
all the columns and giving the top k values and their

column indices.

This function then takes in the flagged indices,
converts them into a set for faster indexing, and

‘highlights’ the sentences - instead of having
token by token flagging - that have more than

50% of the tokens flagged.

This function puts all the above functions
together to return the final highlighted text in
sentences. It first tokenises all the input text.

Then, if the text is too short, it just returns it as
‘human’ text. Then, it sets up a sliding window
scenario, taking tokens 1-10, then 2-11 and so

on as input. Then it processes the text in
batches of 32 and tqdm gives the terminal a
nice progress bar for debugging while a logic

gate checks if the text should be flagged.

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

6

This approach itself, unfortunately, has three clear weaknesses. The first is its inability to detect AI-
generated text using advanced sampling techniques. For example, modern LLMs can have their
‘temperature’ or ‘top-p’ settings set to high and low, respectively, which can mean that the tokens don’t
really align with the predicted tokens from the DistilGPT2 model. The second weakness is its lack of
deep contextual awareness. The context window is only 10 tokens, so that the process is efficient and
fast. This means that it no longer considers any long-term writing patterns or stylistic choices. Finally, it
might also flag predictable human writing. For example, if the text is informational and the topic
doesn’t give the writer much space to be creative.

Fine-Tuned Classifier-based Detection

The previous method discussed has weaknesses since it has a small context window and isn’t trained
specifically to identify AI text. Intuitively, the next idea to consider should be a classifier trained
specifically on identifying AI and human text.

This method involves fine-tuning an LLM to differentiate between AI and human text. Using
traditional classifier methods like decision trees would be suboptimal as they use surface-level features
and don’t have semantic understanding, the way LLMs do.

Essentially, the idea is to take a pre-trained model that already has a level of understanding of how the
English language works. Then, the model is trained on a dataset with human and AI text and is asked
to label the text. For this method to be viable, a larger LLM compared to the one used in the first
approach needs to be used. A study conducted by Minaee, Shervin et. al titled Large Language Models:
A Survey said that ‘larger models make increasingly efficient use of in-context information.’ The paper
suggested that models with more than 1 billion parameters showed significantly better semantic
understanding. Now, it is also important to consider the limitations of the hardware this detector will be
running on. To comfortably fit in 8GB of RAM, a model of less than around 4 billion parameters would
be required.

However, LLMs with 1 to 4 billion parameters take significantly more resources to fine-tune. It would
likely require at least 24GB of VRAM to train a model, factoring in storing datasets and the model itself
with extra tensors required for fine-tuning. Unfortunately, a commercial GPU was not available for this
project, and Google Colab only provides the T4 GPU, which has 16GB of VRAM. Therefore, training a
model of this size was impossible.

This meant that this project would likely need an already fine-tuned model from the open-source
world. One of the most promising models that showed up in the search for a good model was from
Desklib. (https://huggingface.co/desklib/ai-text-detector-v1.01) This model was based on the Deberta-

https://huggingface.co/desklib/ai-text-detector-v1.01

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

7

v3-large model by Microsoft. Its approach to fine-tuning was perfectly aligned with the planned
approach above. Additionally, it also showed promising results on a well-known public benchmark – the
RAID benchmark. (https://raid-bench.xyz/) Figure 3 below shows the RAID benchmark rankings, which
show the top detectors that went through rigorous testing on an extremely large dataset.

Figure 3 - RAID Benchmark Rankings with no adversarial attacks

Desklib achieved an aggregate score of 94.9% on the test. This is impressive considering its size.

Desklib provides code on its website to run its model, but the below code is a slightly edited version to
better suit the purpose of this project.

class DesklibAIDetectionModel(PreTrainedModel):

 config_class = AutoConfig

 def __init__(self, config):

 super().__init__(config)

 self.model = AutoModel.from_config(config)

 self.classifier = nn.Linear(config.hidden_size, 1)

 self.init_weights()

 def forward(self, input_ids, attention_mask=None, labels=None):

 outputs = self.model(input_ids, attention_mask=attention_mask)

 last_hidden_state = outputs[0]

 input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()

 sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, dim=1)

 sum_mask = torch.clamp(input_mask_expanded.sum(dim=1), min=1e-9)

This section defines the class, uses the
HuggingFace AutoConfig class, and loads
the model for binary classification and its

weights.

This section feeds the input through a
forward pass. Then, the output is pooled

to get a single representation of each
sentence through averaging.

https://raid-bench.xyz/

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

8

 pooled_output = sum_embeddings / sum_mask

 logits = self.classifier(pooled_output)

 return {"logits": logits}

class ClassifierDetector:

 def __init__(self, model_dir, device=DEVICE):

 print(f"Initializing ClassifierDetector with '{model_dir}'...")

 self.device = device

 self.tokenizer = AutoTokenizer.from_pretrained(model_dir)

 self.model = DesklibAIDetectionModel.from_pretrained(model_dir).to(self.device)

 self.model.eval()

 print("ClassifierDetector initialized.")

 def detect(self, text, max_len=768):

 encoded = self.tokenizer(text, padding='max_length', truncation=True, max_length=max_len,

return_tensors='pt')

 input_ids = encoded['input_ids'].to(self.device)

 attention_mask = encoded['attention_mask'].to(self.device)

 with torch.no_grad():

 outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)

 probability = torch.sigmoid(outputs["logits"]).item()

 return probability

However, even when this approach is combined with the previous approach there are still weaknesses.
They do not understand text from a linguistic standpoint. The LLM only takes in text token-by-token
and doesn’t understand more statistical or logical factors in linguistics.

Linguistic-based Detection

To finish a well-rounded AI detection system, there needs to be a way to analyse the statistics for
certain features of the text. This leads to requiring a linguistics-based detection system. There are four
main areas for statistics of texts that concern AI text detection:

• Readability (Flesch-Kincaid)
• Burstiness (Sentence length variation)
• Lexical diversity
• Perplexity

This section initialises the tokenizer,
the model, and the device.

The input is tokenized first, then
padded or truncated to reach size
requirements. The model is then
moved to either the CPU or GPU,
and the sigmoid function is used
to convert the logit to a value

between 0 and 1.

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

9

A paper titled ‘Detecting AI-Generated Text with Pre-Trained Models using Linguistic Features’ by
Annepaka Yadagiri et al. said that perplexity was the most successful indicator, and burstiness was also
quite effective. The code below utilises the NLTK package to produce these indicators.

class LinguisticAnalyzer:
 def __init__(self, perplexity_model, perplexity_tokenizer, device):
 self.perplexity_model = perplexity_model
 self.perplexity_tokenizer = perplexity_tokenizer
 self.device = device
 print("LinguisticAnalyzer initialized.")
 def analyze(self, text):
 if len(text.split()) < 10: return None
 readability_grade = textstat.flesch_kincaid_grade(text)
 sentences = sent_tokenize(text)
 if len(sentences) < 2: return { "readability_grade": round(readability_grade, 1),
"sentence_length_variation": 0, "lexical_richness": 0, "perplexity": 0 }
 sentence_lengths = [len(word_tokenize(s)) for s in sentences]
 len_std_dev = np.std(sentence_lengths)
 words = word_tokenize(text.lower())
 lexical_richness = len(set(words)) / len(words) if words else 0
 try:
 encodings = self.perplexity_tokenizer(text, return_tensors='pt')
 input_ids = encodings.input_ids.to(self.device)
 if input_ids.shape[1] > 1024: input_ids = input_ids[:, :1024]
 with torch.no_grad():
 outputs = self.perplexity_model(input_ids, labels=input_ids)
 perplexity = torch.exp(outputs.loss).item()
 except Exception: perplexity = 0
 return { "readability_grade": round(readability_grade, 1),
"sentence_length_variation": round(len_std_dev, 2), "lexical_richness":
round(lexical_richness, 2), "perplexity": round(perplexity, 1) }

Creating an Ensemble and Writing an API

To take advantage of all of the detection approaches outlined above, it is necessary to create an
‘ensemble’ of models. Ensembling is when multiple methods are put together, and each of the results is
weighted respectively to output a final score. It was decided that, after rounds of practical manual
testing, the Desklib detection method would receive 60% weighting, the logit-based detection method
would have a weighting of 25%, and the linguistic methods would receive a total of 15% which would
be evenly split between the burstiness scale and the perplexity scale.

Load models and
set the device.

This code uses the
NLTK library to put the
scores into variables

and then returns it in a
Dictionary.

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

10

Below is the code for the combined detector class.

class CombinedDetector:

 def __init__(self):

 logit_model_path = "./models/distilgpt2"

 classifier_model_path = "./models/desklib-detector"

 print(f"Loading LogitDetector from local path: {logit_model_path}")

 self.logit_detector = LogitDetector(model_name=logit_model_path)

 print(f"Loading ClassifierDetector from local path: {classifier_model_path}")

 self.classifier_detector = ClassifierDetector(model_dir=classifier_model_path)

 self.linguistic_analyzer = LinguisticAnalyzer(perplexity_model=self.logit_detector.model,

perplexity_tokenizer=self.logit_detector.tokenizer, device=DEVICE)

 def _calculate_ensemble_score(self, desklib_prob, highlight_chunks, linguistic_stats):

 """

 Calculates a final AI score using a weighted ensemble of three different methods.

 1. Desklib Classifier Score: Direct AI probability from the fine-tuned model. Highest weight.

 2. DistilGPT-2 Logit Score: Probability derived from the proportion of text flagged as AI.

 3. Linguistic Score: Score based on perplexity and "burstiness" (sentence length variation).

 Returns the final weighted probability and a dictionary of the component scores.

 """

 # --- Component 1: Desklib Score (Highest Weight) ---

 score_desklib = desklib_prob

 # --- Component 2: DistilGPT-2 Logit Score (Second Highest Weight) ---

 ai_char_count = sum(len(c['text']) for c in highlight_chunks if c['type'] == 'AI')

 total_char_count = sum(len(c['text']) for c in highlight_chunks)

 score_distilgpt2 = (ai_char_count / total_char_count) if total_char_count > 0 else 0.0

 # --- Component 3: Linguistic Feature Score (Third Highest Weight) ---

 score_linguistic = 0.0

 if linguistic_stats:

 # Perplexity component: Lower perplexity is more AI-like.

 # Map a perplexity range of [40, 100] to a score of [1.0, 0.0].

 perplexity = linguistic_stats.get('perplexity', 100) # Default to human-like

 perplexity_score = 1.0 - ((perplexity - 40) / (100 - 40))

 perplexity_score = np.clip(perplexity_score, 0, 1)

 # Burstiness component: Lower sentence length variation is more AI-like.

 # Map a variation range of [2, 8] to a score of [1.0, 0.0].

 sent_variation = linguistic_stats.get('sentence_length_variation', 8) # Default to human-like

 burstiness_score = 1.0 - ((sent_variation - 2) / (8 - 2))

 burstiness_score = np.clip(burstiness_score, 0, 1)

 score_linguistic = (perplexity_score + burstiness_score) / 2.0

This function sets the
model paths and loads

them to device.

This is the main
calculation function.

This section gets the
individual scores from
each model and
prepares them.

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

11

 # --- Ensemble Weights ---

 W_DESKLIB = 0.60

 W_DISTILGPT2 = 0.25

 W_LINGUISTIC = 0.15

 # --- Final Weighted Score ---

 final_score = (W_DESKLIB * score_desklib) + \

 (W_DISTILGPT2 * score_distilgpt2) + \

 (W_LINGUISTIC * score_linguistic)

 component_scores = {

 "desklib_score": round(score_desklib, 4),

 "distilgpt2_logit_score": round(score_distilgpt2, 4),

 "linguistic_feature_score": round(score_linguistic, 4),

 "weights": {"desklib": W_DESKLIB, "distilgpt2": W_DISTILGPT2, "linguistic": W_LINGUISTIC}

 }

 return final_score, component_scores

 def detect(self, text):

 print("\n--- Starting New Analysis ---")

 # --- Step 1: Run all individual detectors ---

 desklib_prob = self.classifier_detector.detect(text)

 highlight_chunks = self.logit_detector.detect(text)

 linguistic_stats = self.linguistic_analyzer.analyze(text)

 # --- Step 2: Calculate the new ensemble score ---

 final_prob, component_scores = self._calculate_ensemble_score(

 desklib_prob=desklib_prob,

 highlight_chunks=highlight_chunks,

 linguistic_stats=linguistic_stats

)

 # --- Step 3: Assemble the final result ---

 result = {

 "overall_percentage": round(final_prob * 100, 2),

 "component_scores": component_scores,

 "chunks": highlight_chunks,

 "linguistics": linguistic_stats

 }

 return result

Not all of the code has been shown in this report, but all of it can be viewed on the GitHub Repository
found here - https://github.com/oscarzhou511/AI-Detector-OSA. All of the backend Python code is

The weighting of each
is set here.

Calculation of final
score

Storing each score for
returning to API

This is the actual
function for calling all

the previous functions in
their individual method
classes. It does the final

calculation and then
packages everything into
a final result dictionary,
ready to be delivered to

the API.

https://github.com/oscarzhou511/AI-Detector-OSA

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

12

present in the file located here - https://github.com/oscarzhou511/AI-Detector-
OSA/blob/main/ai_detector_server.py. There is also a UI deployed here -
https://oscarzhou511.github.io/AI-Detector-OSA/, which only functions if the Python code is running
locally.

Evaluation
Finally, the moment of truth. It is time to find out how this completely private, efficient, local, and
hopefully accurate AI content detector compares to the RAID benchmark itself. Unfortunately, running
it on the entire RAID training dataset would not be viable with the resource limitations for this project.
With an Nvidia T4 GPU, it would take over 8 hours to run it on the entire training dataset. The test
dataset does not have publicly available labels, so the team behind the RAID benchmark reviews
results themselves, which would take a considerable amount of time. To obtain an accurate idea of
how it approximately performs compared to other models, it was run on a small subset of 2000 texts,
proportionally scaled down from the entire dataset. The Google Colab notebook used for evaluation can
be accessed here - https://colab.research.google.com/drive/1UqpueWYXx5-f-
_wMzq63UW18BDVmfUoj?usp=sharing. The model's performance on a scaled-down version of the
RAID training dataset is illustrated in Figure 4 below, achieving a 95.7% accuracy.

Figure 4 - Results on a small subset of the RAID training dataset

Many people use ‘adversarial attacks’ to work around AI detection systems. One of the most popular
methods is to set the probability threshold for top-p sampling to a very low value. This essentially
makes the AI generate text that is much less predictable and more creative. For example, if the
probability rankings for the next tokens are:

https://github.com/oscarzhou511/AI-Detector-OSA/blob/main/ai_detector_server.py
https://github.com/oscarzhou511/AI-Detector-OSA/blob/main/ai_detector_server.py
https://oscarzhou511.github.io/AI-Detector-OSA/
https://colab.research.google.com/drive/1UqpueWYXx5-f-_wMzq63UW18BDVmfUoj?usp=sharing
https://colab.research.google.com/drive/1UqpueWYXx5-f-_wMzq63UW18BDVmfUoj?usp=sharing

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

13

• ball: 50% probability

• cat: 30% probability

• car: 15% probability

• mailman: 4% probability

• dream: 1% probability

• hello: 0.9% probability.

Then, if the Top P is set to 0.9, or 90%, the system goes down in the ranking and adds the
probabilities up until it gets to a total of 90%. These tokens are then the ‘pool’ from which the system
can choose tokens randomly. In the example above, the tokens in the pool would be the tokens from
‘ball’ to ‘dream.’ Usually, AI detection systems are trained on text generated by LLMs with their Top P
set to 95-100%. So, if a user were to change this setting, along with settings like temperature (which
is usually set at 0.7-1.0), AI detection systems can be easily fooled. The below paragraph was
generated completely by Google’s 2.5 Pro model, with a temperature setting of 2 and a Top P setting
of 0.25.

“The sheer, overwhelming intention to be productive is a force of nature, isn't it? The
coffee is brewed, the perfect lo-fi playlist is humming, the document is open and waiting.
And then your brain just decides, completely unprompted, to wonder if penguins have
knees. Suddenly you're not typing a report; you're deep in a Google image search, which
then leads to a YouTube video about a zookeeper explaining penguin anatomy, and wow,
they do have knees, they're just hidden up high. An hour has vanished. The coffee is cold.
And you're left just staring at that blinking cursor, a tiny, mocking monument to your
spectacular failure of focus. Productivity is a myth. A beautiful, beautiful myth.”

Table 2 shows some of the results across various commercial AI detectors:

Table 2 - Commercial detectors and their given scores

Detector Verdict
Originality.ai 99% Human
Writer.com* 87% Human
Quillbot.com 100% Human
Sapling.ai 99.1% Human
Grammarly.com 100% Human
GptZero.me 97% Human
Desklib (alone) 100% Human

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

14

Unfortunately, it seems that this simple adversarial attack was able to fool a concerning number of
commercial AI detectors. However, the approach in this report resulted in ‘39% Human Content,’ which
is the same as a 61% confidence in the text being AI-generated. This is significantly more accurate
than the above 85% confidence that the commercial detectors came up with for the text being human.

User Guide
There is a user guide on the GitHub Repository available here - https://github.com/oscarzhou511/AI-
Detector-OSA/tree/main.

There is also a video showing the setup process on macOS 26 (macOS Tahoe) available here -
https://youtu.be/JyxrHkjRKDM.

Reflection
This was an extremely interesting project to work on. I was initially inspired to do something along the
lines of AI content detection because of how the lines between AI and human work and the ethics of
using generative AI in school were becoming blurry. Then, last year, I was privileged to be on the
Australian team for the International Olympiad in Artificial Intelligence. In the Olympiad, there was a
Natural Language Processing task that asked teams to take a dataset of encoded text from another
language and classify it into a few categories. In this task, we used Bert, a model created by Google
during the earliest breakthroughs in LLM technology. We also had a workshop around LoRA (low-rank
adaptation), which is a method of finetuning a model without needing to retrain the whole model
again. Unfortunately, I didn’t get around to using this method during this project, but I might consider
it in the future. Overall, I am satisfied with the outcome of this project. The result has been an AI
detector that sits comfortably among the world’s best solutions. It scores similarly on the RAID
Benchmark to other well-established solutions, and in some areas scores higher than systems like
GPTZero, Originality, Winston, and ZeroGPT. The most important thing, however, is that it does all of
this locally, keeping all the data completely on-device without requiring any third-party servers. Servers
in data centres around the world are amongst the biggest energy consumers, and it is becoming
clearer every day that efficiency is key in AI, with on-device processing expected to become

https://github.com/oscarzhou511/AI-Detector-OSA/tree/main
https://github.com/oscarzhou511/AI-Detector-OSA/tree/main
https://youtu.be/JyxrHkjRKDM

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

15

increasingly popular because of its environmental and efficiency benefits, according to a paper by
Nazli Tekin et al.

Bibliography & References
This project most certainly would not have been possible without the resources listed below. They were
all of immense help and were incredible reads.

Annepaka Yadagiri, et al. “Detecting AI-Generated Text with Pre-Trained Models Using

Linguistic Features.” ACL Anthology, Dec. 2024, pp. 188–196,

aclanthology.org/2024.icon-1.21/. Accessed 23 June 2025.

Cheng, Myra, et al. “From Tools to Thieves: Measuring and Understanding Public Perceptions

of AI through Crowdsourced Metaphors.” ArXiv.org, 2025, arxiv.org/abs/2501.18045.

Accessed 22 June 2025.

Desklib “GitHub - Desklib/Ai-Text-Detector: Desklib’s AI Text Detector.” Desklib, 2024,

github.com/desklib/ai-text-detector. Accessed 21 June 2025.

Dugan, Liam, et al. “RAID: A Shared Benchmark for Robust Evaluation of Machine-Generated

Text Detectors.” ArXiv.org, 2024, arxiv.org/abs/2405.07940.

Hsieh, Cheng-Yu, et al. “Distilling Step-By-Step! Outperforming Larger Language Models with

Less Training Data and Smaller Model Sizes.” ArXiv.org, 3 May 2023,

arxiv.org/abs/2305.02301.

IBM. “Ensemble Learning.” Ibm.com, 18 Mar. 2024, www.ibm.com/think/topics/ensemble-

learning.

Oscar Zhou Improving the accuracy and efficiency of detecting AI-generated text June 2025

16

Lee, Bruce W, and Jason Hyung-Jong Lee. “Traditional Readability Formulas Compared for

English.” ArXiv.org, 2023, arxiv.org/abs/2301.02975.

Ma, Huan, et al. “Estimating LLM Uncertainty with Evidence.” ArXiv.org, 2025,

arxiv.org/abs/2502.00290. Accessed 22 June 2025.

Minaee, Shervin, et al. “Large Language Models: A Survey.” ArXiv (Cornell University), 9 Feb.

2024, https://doi.org/10.48550/arxiv.2402.06196.

Naveed, Humza, et al. “A Comprehensive Overview of Large Language Models.” ArXiv.org, 18

Aug. 2023, arxiv.org/abs/2307.06435.

Tekin, Nazli, et al. “A Review of On-Device Machine Learning for IoT: An Energy Perspective.”

Ad Hoc Networks, vol. 153, 1 Feb. 2024, p. 103348,

www.sciencedirect.com/science/article/abs/pii/S1570870523002688,

https://doi.org/10.1016/j.adhoc.2023.103348.

