

Programming, Apps &

Robotics

Year 9-10

Vinuka Kaluwila

Pembroke School - Middle

School

2024 Oliphant Science Awards Vinuka.Kaluwila@pembroke.sa.edu.au

| Simulating Three Bodies Interacting Through
| Gravity

Vinuka Kaluwila – Programming Apps and Robotics

| Section 1: Introduction

There is one force in our lives that we experience every day, but hardly ever stop to think about – gravity.
From shaping the motions of galaxies over millennia to keeping us all on the ground each day, gravity
fundamentally influences the universe we live in. But how exactly does gravity affect the movements of
objects in space?

| Section 2: Aim and Scientific Purpose

The aim of this project is to be used as a teaching resource, to educate students about how gravity is
simulated, equations in 3 dimensions, and more broadly about how differential equations are used to simulate
real-world scenarios.

| Section 3: Potential Uses

This simulation is not intended to be used practically for simulating the motions of planets and stars, but
rather as an education tool to show how these motions are calculated on a larger scale when scientists and
researchers professionally calculate orbits and planetary motion. Hence, this program can potentially be used
in schools or universities to educate students about how gravity is simulated and the complexities of the
underlying mathematics and science.

| Section 4: Requirements to Run the Program

This program is made on Desmos online graphing calculator, which is compatible with almost all online
browsers, including the latest two versions of Chrome, Firefox, Safari, and Microsoft Edge. Similarly, internet
access is required to run the program as Demos is an online tool. For best results, the simulation can be run
on a laptop.

| Section 5: Instructions for Use

1. Open the program on: https://www.desmos.com/calculator/etzdz3idyc
2. Scroll down using the scroll bar on the left side of the simulation, until the folder “Constants (Mass,

𝐺, and Δ𝑡)” is reached. Click on the grey triangle near the folder icon to open the folder.
3. Set these constants to the desired values, using the sliders insider the folders. 𝑚φ is the mass of the

red body, 𝑚ϵ is the mass of the green body, and 𝑚ϯ is the mass of the blue body. Increasing the
mass will increase the gravitational attraction between bodies. 𝐺 is the gravitational constant, with
higher values of 𝐺 corresponding to more gravitational attraction between bodies. In real conditions,
𝐺 ≈ 6.6743 × 10−φφ. While this will make the simulation reflective of actual conditions in space, the
simulation will run extremely slowly (as gravity is, in actuality, an incredibly weak force). Hence,
𝐺 = 1 is the value which is set by default in the simulation. When these constants are set to desired
values, this folder can be closed by pressing the triangle icon again.

4. Scroll down once again using the scroll bar on the left side of the simulation, until the folders
“Position 01,” “Velocity 01,” “Position 02,” “Velocity 02,” “Position 03,” and “Velocity 03” are
reached.

5. Open each of the folders one by one and use the sliders to change the different initial positions, and
velocities! The initial positions of the red body, the green body, and the blue body are
𝑀φ(𝑥φ, 𝑦φ, 𝑧φ), 𝑀ϵ(𝑥ϵ, 𝑦ϵ, 𝑧ϵ) and 𝑀ϯ(𝑥ϯ, 𝑦ϯ, 𝑧ϯ) respectively. The values of 𝑥φ, 𝑦φ, 𝑧φ …𝑦ϯ, 𝑧ϯ can
be changed to desired values, using the sliders inside the folders. The velocity vectors for the red
body, green body, and blue body are stored as 𝑉φ, 𝑉ϵ and 𝑉ϯ, with initial conditions 𝑉φ =

ॅ𝑣φ֓, 𝑣φ֔, 𝑣φ֕ॆ, 𝑉ϵ = ॅ𝑣ϵ֓, 𝑣ϵ֔, 𝑣ϵ֕ॆ and 𝑉ϯ = ॅ𝑣ϯ֓, 𝑣ϯ֔, 𝑣ϯ֕ॆ. These values of 𝑣φ֓, 𝑣φ֔, 𝑣φ֕ …𝑣ϯ֔, 𝑣ϯ֕

can also all be changed using the sliders inside the folders. When these initial conditions are set to
desired values, the folders can be closed by pressing the triangle icons again.

6. Press the “Reset” button on the right of the simulation. This is very important as this sets the
initial conditions. You should see the positions and velocity vectors change on the right side of
the simulation once this is pressed.

7. Run the simulation by pressing the “Start/Stop” button and drag the white point inside the square
on the right of the simulation to rotate the 3𝐷 space as the simulation is running.

8. When you want to stop the simulation, press the “Start/Stop” button again, and to restore the initial
conditions the “Reset button” can be pressed again.

9. Folders can be turned off by pressing the folder icon. This can be used to turn off the axes by
pressing the “Visualizing the 3D space” folder, or can be used to turn off the velocity vectors by
pressing the “Velocity Vectors” folder. Similarly, there is information inside the folders on how the
simulation is run, and how the differential equations are numerically solved!

10. If there are any questions, there are instructions on the program itself, inside the folders. Similarly,
feel free to contact me on vinuka.kaluwila@pembroke.sa.edu.au if there are any problems or queries.

| Section 6: Explanation of Code and Underlying Mathematics/Science

| Section 6.1.1: Creating the 𝑥𝑦 plane

When making a simulation of three bodies interacting in three dimensions, the first step was to create a
three-dimensional graphing system within the Desmos graphing calculator (which originally graphs in two
dimensions). This was be done by projecting points in three dimensions to the two-dimensional grid.

As can be seen in Figure 01, a rotatable square can be made by connecting four points around a circle which
are all ᇎ

ϵ
 radians (90°) of a rotation apart from each other. Furthermore, tilting that square along a horizontal

axis simply has the effect of morphing the circle into an ellipse.

Figure 01: Showing tilting a square result in its bounding circle being morphed into an ellipse.
Circle (normal) Ellipse (tilted)

To achieve the first freedom of rotation, it was noted that points on a circle are of the form (cos(𝜙) , sin(𝜙)),
the four points 𝐴, 𝐵, 𝐶 and 𝐷 of a square, can be written as 𝐴(cos(𝜙) , sin(𝜙)), 𝐵(cos(𝜙 + ᇎ

ϵ) , sin(𝜙 + ᇎ
ϵ)),

𝐶(cos(𝜙 + 𝜋) , sin(𝜙 + 𝜋)) and 𝐷(cos(𝜙 + ϯᇎ
ϵ) , sin(𝜙 + ϯᇎ

ϵ)), as they must all be ᇎ
ϵ
 radians apart from each

other. Using the fact that both sin(𝑥) and cos(𝑥) are simply ᇎ
ϵ
 radians out of phase from each other, this can

be simplified to give 𝐴(cos(𝜙) , sin(𝜙)), 𝐵(− sin(𝜙) , cos(𝜙)), 𝐶(−cos(𝜙) ,− sin(𝜙)) and
𝐷(sin(𝜙) , −cos(𝜙)). Hence, by varying 𝜙 between − ᇎ

Κ
 and Ϩᇎ

Κ
 the square could be made rotatable.

To achieve the tilt, it was noted that the equation for an ellipse with major radius of 1 is of the form 𝑥ϵ +
֔ɞ

ֆɞ = 1, where 𝑘 relates to how much the ellipse is “squished” and hence how much the square appears tilted
into the higher dimension. As 𝑘 only affects how much the 𝑦-coordinates of 𝐴, 𝐵, 𝐶 and 𝐷 are “squished,”
the 𝑦-coordinates of these points must be multiplied by a scale factor of 𝑘, where 𝑘 ranges between −1 and 1.

This results in the following points for 𝐴, 𝐵, 𝐶 and 𝐷, where 𝜙 is the rotation of the square ranging between
− ᇎ

Κ
 and Ϩᇎ

Κ
, and 𝑘 is the tilt of the square into the third dimension between −1 and 1:

𝐴(cos(𝜙) , 𝑘 sin(𝜙))

𝐵(− sin(𝜙) , 𝑘 cos(𝜙))

𝐶(− cos(𝜙) , −𝑘 sin(𝜙))

𝐷(sin(𝜙) , −𝑘 cos(𝜙))

These points were connected using Desmos’ “polygon” tool, which allowed for the 𝑥𝑦 plane to be drawn:

polygon(𝐴,𝐵, 𝐶, 𝐷)

This forms the basis for the 𝑥𝑦 plane in the final simulation, as it allows for two axes of rotation given by the
parameters 𝜙 and 𝑘. For simplicity purposes, the values for the 𝑥 and 𝑦-coordinates for points 𝐴, 𝐵, 𝐶 and
𝐷 were given the names of 𝐴֓, 𝐴֔, 𝐵֓, 𝐵֔, 𝐶֓, 𝐶֔ and 𝐷֓, 𝐷֔ respectively, such that 𝐴(𝐴֓,𝐴֔),
𝐵(𝐵֓,𝐵֔), and so on for 𝐶 and 𝐷.

Hence, this was implemented into the simulation through the following LaTeX code, and can be found under
the “Visualizing the 3D space” folder in the simulation:

\operatorname{polygon}\left(A,B,C,D\right)
A=\left(A_{x},A_{y}\right)
B=\left(B_{x},B_{y}\right)
C=\left(C_{x},C_{y}\right)
D=\left(D_{x},D_{y}\right)
A_{x}=\cos\left(\phi\right)
A_{y}=k\sin\left(\phi\right)
B_{x}=-\sin\left(\phi\right)
B_{y}=k\cos\left(\phi\right)
C_{x}=-\cos\left(\phi\right)
C_{y}=-k\sin\left(\phi\right)
D_{x}=\sin\left(\phi\right)
D_{y}=-k\cos\left(\phi\right)

| Section 6.1.2: Creating the grid

The next step in creating the simulation was to create a grid on this square, which would become the 𝑥𝑦
plane in the final simulation. First, a parameter called 𝑧֊֊ֈ was defined, which is the maximum value of the
𝑥 or 𝑦-coordinates shown on the plane. For example, the left-most part of Figure 02 shows what 𝑧֊֊ֈ = 1
corresponds to, the middle part shows what 𝑧֊֊ֈ = 2 corresponds to, and the right-most image shows what
𝑧֊֊ֈ = 3 corresponds to, in the final plane.

Figure 02: Showing different values of 𝑧֊֊ֈ.
𝑧֊֊ֈ = 1 𝑧֊֊ֈ = 2 𝑧֊֊ֈ = 3

Then, a new parameter was defined called 𝑧, such that 𝑧 = 2𝑧֊֊ֈ + 2. This is is analagous to the number of
small squares wide the grid would be. For example, as can be seen in Figure 01, when 𝑧֊֊ֈ = 1, the grid is 4
small squares wide, and when 𝑧֊֊ֈ = 2, the grid is 6 small squares wide. Note that this 𝑧 does not refer to
the 𝑧 axis.

Now, consider Figure 03. As can be seen, to create the grid on the square, the lines 𝐴𝐵, 𝐵𝐶, 𝐶𝐷 and 𝐴𝐷
can be split into 𝑧 regions (hence 𝑧 − 1 equally spaced points) and these points be connected to create the
lines on the grid.

Figure 03: Showing how to create the lines of the grid by splitting lines 𝐴𝐵, 𝐵𝐶 , 𝐶𝐷 and 𝐴𝐷 into 𝑧 equal
regions, and plotting 𝑧 − 1 points on each line segment.

To do this, the Desmos function of “lists” were used. The list 𝑛 was defined such that 𝑛 = [1,2,3…𝑧 − 1].
Now, the section formula in coordinate geometery was used. To split the line connectiong points (𝑥φ, 𝑦φ) and
(𝑥ϵ, 𝑦ϵ) into segments of the ratios 𝑝: 𝑞, the resulting point is given by:

গ
𝑝𝑥ϵ + 𝑞𝑥φ

𝑝 + 𝑞
,
𝑝𝑦ϵ + 𝑞𝑦φ

𝑝 + 𝑞
ঘ

Hence, this gives the following expressions for the points along the lines 𝐴𝐵, 𝐵𝐶, 𝐶𝐷 and 𝐴𝐷, using the list
𝑛 = [1,2,3…𝑧 − 1]:

ভ
𝑛𝐴֓ + (𝑧 − 𝑛)𝐵֓

𝑧
,
𝑛𝐴֔ + (𝑧 − 𝑛)𝐵֔

𝑧
ম

ভ
𝑛𝐷֓ + (𝑧 − 𝑛)𝐶֓

𝑧
,
𝑛𝐷֔ + (𝑧 − 𝑛)𝐶֔

𝑧
ম

ভ
𝑛𝐴֓ + (𝑧 − 𝑛)𝐷֓

𝑧
,
𝑛𝐴֔ + (𝑧 − 𝑛)𝐷֔

𝑧
ম

ভ
𝑛𝐵֓ + (𝑧 − 𝑛)𝐶֓

𝑧
,
𝑛𝐵֔ + (𝑧 − 𝑛)𝐶֔

𝑧
ম

Hence, to connect the points opposite from each other to create the lines in the grid, Desmos’ “polygon”
function was used. This would simply connect the corresponding points to create the lines in the grid:

polygonৃভ
𝑛𝐴֓ + (𝑧 − 𝑛)𝐵֓

𝑧
,
𝑛𝐴֔ + (𝑧 − 𝑛)𝐵֔

𝑧
ম , ভ

𝑛𝐷֓ + (𝑧 − 𝑛)𝐶֓

𝑧
,
𝑛𝐷֔ + (𝑧 − 𝑛)𝐶֔

𝑧
মৄ

polygonৃভ
𝑛𝐴֓ + (𝑧 − 𝑛)𝐷֓

𝑧
,
𝑛𝐴֔ + (𝑧 − 𝑛)𝐷֔

𝑧
ম ,ভ

𝑛𝐵֓ + (𝑧 − 𝑛)𝐶֓

𝑧
,
𝑛𝐵֔ + (𝑧 − 𝑛)𝐶֔

𝑧
মৄ

Hence, this was implemented using the following LaTeX code, and can also be found under the “Visualizing
the 3D space” folder in the simulation:

z=2z_{oom}+2
n=\left[1...z-1\right]
\operatorname{polygon}\left(\left(\frac{nA_{x}+\left(z-
n\right)B_{x}}{z},\frac{nA_{y}+\left(z-n\right)B_{y}}{z}\right),\left(\frac{nD_{x}+\left(z-
n\right)C_{x}}{z},\frac{nD_{y}+\left(z-n\right)C_{y}}{z}\right)\right)
\operatorname{polygon}\left(\left(\frac{nA_{x}+\left(z-
n\right)D_{x}}{z},\frac{nA_{y}+\left(z-n\right)D_{y}}{z}\right),\left(\frac{nB_{x}+\left(z-
n\right)C_{x}}{z},\frac{nB_{y}+\left(z-n\right)C_{y}}{z}\right)\right)

| Section 1.1.3: Creating and labelling the points on the 𝑥 and 𝑦 axes.

For the next section, Demos’ “midpoint” function was used widely, hence the following notation was
implemented, with 𝑋 and 𝑌 represent two points:

𝑀(𝑋,𝑌) = midpoint(𝑋, 𝑌)

To create the 𝑥 and 𝑦 axes, it was noted that the points on these axes would be the midpoints of the points
used to create the lines on the grid. Hence, Desmos’ “midpoint” function was used. Once again, the list 𝑛 was
used. This resulted in the following, which would be the points on the 𝑥 and 𝑦 axes:

𝑀 ৃভ
𝑛𝐴֓ + (𝑧 − 𝑛)𝐵֓

𝑧
,
𝑛𝐴֔ + (𝑧 − 𝑛)𝐵֔

𝑧
ম ,ভ

𝑛𝐷֓ + (𝑧 − 𝑛)𝐶֓

𝑧
,
𝑛𝐷֔ + (𝑧 − 𝑛)𝐶֔

𝑧
মৄ

𝑀 ৃভ
𝑛𝐴֓ + (𝑧 − 𝑛)𝐷֓

𝑧
,
𝑛𝐴֔ + (𝑧 − 𝑛)𝐷֔

𝑧
ম , ভ

𝑛𝐵֓ + (𝑧 − 𝑛)𝐶֓

𝑧
,
𝑛𝐵֔ + (𝑧 − 𝑛)𝐶֔

𝑧
মৄ

These points were labelled by creating new lists of the form 𝑙 = 𝑛 − ֕
ϵ
 and 𝑜 = ֕

ϵ
− 𝑛 respectively.

To create the axes themselves, the midpoint of 𝐴 and 𝐵 and the midpoint of 𝐶 and 𝐷 were connected, and
the midpoint of 𝐴 and 𝐷 and the midpoint of 𝐵 and 𝐶 were connected. Similarly, one of each of these points
can be labelled 𝑥 and 𝑦 respectively to label the 𝑥 and 𝑦 axes. This gives the following, with square brackets
representing line segments:

[𝑀(𝐴,𝐵),𝑀(𝐶, 𝐷)] with the point 𝑀(𝐶, 𝐷) being labelled “𝑥”

[𝑀(𝐴,𝐷), 𝑀(𝐵, 𝐶)] with the point 𝑀(𝐴,𝐷) being labelled “𝑦”

Hence, this was implemented into the simulation through the following LaTeX code, and can also be found
under the “Visualizing the 3D space” folder in the simulation:

M\left(X,Y\right)=\operatorname{midpoint}\left(X,Y\right)
l=n-\frac{z}{2}
o=\frac{z}{2}-n
M\left(\left(\frac{nA_{x}+\left(z-n\right)B_{x}}{z},\frac{nA_{y}+\left(z-
n\right)B_{y}}{z}\right),\left(\frac{nD_{x}+\left(z-n\right)C_{x}}{z},\frac{nD_{y}+\left(z-
n\right)C_{y}}{z}\right)\right) (label: `${l}`)
M\left(\left(\frac{nA_{x}+\left(z-n\right)D_{x}}{z},\frac{nA_{y}+\left(z-
n\right)D_{y}}{z}\right),\left(\frac{nB_{x}+\left(z-n\right)C_{x}}{z},\frac{nB_{y}+\left(z-
n\right)C_{y}}{z}\right)\right) (label: `${o}`)
\left[M\left(A,B\right),M\left(C,D\right)\right]
M\left(C,D\right) (label: `x`)
\left[M\left(A,D\right),M\left(B,C\right)\right]
M\left(A,D\right) (label: `y`)

| Section 6.1.4: Creating the 𝑧 axis

To create the 𝑧 axis, it was noted that the 𝑧 axis can also be modelled by an ellipse. As can be seen in Figure
04, however, when the ellipse modelling the 𝑥𝑦 plane has a low eccentricity, the 𝑧 axis ellipse has a high
eccentricity. Conversely, when the 𝑧 axis ellipse has a lower eccentricity, the 𝑥𝑦 plane axis ellipse has a higher
eccentricity. This is intuitive, as the 𝑧 axis is at 90° to the 𝑥 and 𝑦 axes.

Figure 04: Showing the ellipse modelling the 𝑧 axis (blue) along with the ellipse modelling the 𝑥𝑦 plane.
Blue ellipse has higher eccentricity Blue ellipse has lower eccentricity

Hence, as the ellipse modelling the 𝑥𝑦 plane depends on 𝑘ϵ, the ellipse modelling the 𝑧 axis can be made to
depend on 1 − 𝑘ϵ to achieve this relationship between the two eccentricities. Hence, the ellipse modelling the
𝑧 axis was made to be given by the equation 𝑥ϵ + ϵ֔ɞ

φ−ֆɞ = 1. Note that there is a factor of 2 also affecting 𝑦ϵ.
This is because the 𝑧 axis extends both above and below the 𝑥𝑦 plane instead of just above, causing an extra
coefficient of 2 to be involved. The 𝑧 axis can be drawn by connecting the points at which 𝑥 = 0, which can
be solved for:

0ϵ +
2𝑦ϵ

1 − 𝑘ϵ
= 1

2𝑦ϵ = 1 − 𝑘ϵ

𝑦 = ±

√
1 − 𝑘ϵ

√
2

Hence, the 𝑧 axis can be made by connecting the points ५0,
√

φ−ֆɞ
√

ϵ
६ and ५0,−

√
φ−ֆɞ
√

ϵ
६. This was implemented

as follows:

ॱ५0,
√

φ−ֆɞ
√

ϵ
६ , ५0, −

√
φ−ֆɞ
√

ϵ
६ॲ with the point ५0,

√
φ−ֆɞ
√

ϵ
६ being labelled “𝑧”

To number the 𝑧 axis, it was noted that this could simply be done by splitting the line segment
ॱ५0,

√
φ−ֆɞ
√

ϵ
६ , ५0, −

√
φ−ֆɞ
√

ϵ
६ॲ into 𝑧 equal segments (not that here, 𝑧 referes to the parameter defined earlier,

not the 𝑧 axis). This could be achieved by scaling the point ५0,
√

φ−ֆɞ
√

ϵ
६ by a factor of ϵ։−֕

֕
, and resulted in

the following points on the 𝑧 axis:

ভ0,
(2𝑛 − 𝑧)

√
1 − 𝑘ϵ

√
2𝑧

ম

This was labelled once again using the list 𝑙 defined previously.

This was implemented into the simulation through the following LaTeX code, and can also be found under
the “Visualizing the 3D space” folder in the simulation:

\left[\left(0,\frac{\sqrt{1-k^{2}}}{\sqrt{2}}\right),\left(0,-\frac{\sqrt{1-
k^{2}}}{\sqrt{2}}\right)\right]
\left(0,\frac{\sqrt{1-k^{2}}}{\sqrt{2}}\right) (label: `z`)
\left(0,\frac{\left(2n-z\right)\sqrt{1-k^{2}}}{\sqrt{2}z}\right) (label: `${l}`)

After completing sections 1.1.1 to 1.1.4, the result was the 3D space shown in Figure 05.

Figure 05: The completed 3D space with 𝑥, 𝑦 and 𝑧 axis.

| Section 6.1.5: Creating plottable points

After projecting 3D space into 2D space, a method needed to be designed for points to be plotted on the new
axes. To do this, a projection function 𝑃 projecting 3D points of the form (𝑋, 𝑌 , 𝑍) into 2D in Desmos
needed to be designed. Such a projection function would take the form 𝑃(𝑋, 𝑌 ,𝑍) = (𝛼, 𝛽) taking the 𝑥, 𝑦
and 𝑧-coordinates of the point as inputs and outputting a new 𝑥 and 𝑦-coordinates 𝛼 and 𝛽. We can
construct such a function.

First, consider a point (𝑋, 𝑌) on the regular 𝑥𝑦 plane. This can be expressed in the polar form (𝑅, 𝜃) =

ि
√

𝑋ϵ + 𝑌 ϵ, tan−φिպ
չीी. The simulated 𝑥𝑦 plane rotates points by 𝜙 − ϯᇎ

Κ
. This is because 𝜙 = ϯᇎ

Κ

corresponds to the simulated 𝑥𝑦 plane being oriented in the same way as the normal 𝑥𝑦 plane. This is shown
in Figure 06.

Figure 06: orientation of the simulated 𝑥𝑦 plane.
𝜙 = 0 𝜙 = ϯᇎ

Κ

Hence, 𝜙 − ϯᇎ
Κ

 can be added to 𝜃, to give (𝑅, 𝜃 + 𝜙 − ϯᇎ
Κ) = ि

√
𝑋ϵ + 𝑌 ϵ, tan−φिպ

չी + 𝜙 − ϯᇎ
Κ ी. Converting

this back to cartesian form using (𝑋, 𝑌) = (𝑅 cos(𝜃) ,𝑅 sin(𝜃)) gives the basis for the projecting function.
As this is not the final projection function, this was notated as 𝑃 ∗.

𝑃 ∗(𝑋, 𝑌 , 0) = গఉ𝑋ϵ + 𝑌 ϵ cosগtan−φ গ
𝑌

𝑋
ঘ + 𝜙 −

3𝜋

4
ঘ , ఉ𝑋ϵ + 𝑌 ϵ sinগtan−φ গ

𝑌

𝑋
ঘ + 𝜙 −

3𝜋

4
ঘঘ

Now, as the 𝑦-coordinate is scaled by 𝑘 to give the second axis of rotation, this can be applied to the
projection function. This gives:

𝑃 ∗(𝑋, 𝑌 , 0) = গఉ𝑋ϵ + 𝑌 ϵ cosগtan−φ গ
𝑌

𝑋
ঘ + 𝜙 −

3𝜋

4
ঘ , 𝑘ఉ𝑋ϵ + 𝑌 ϵ sin গtan−φ গ

𝑌

𝑋
ঘ + 𝜙 −

3𝜋

4
ঘঘ

Furthermore, note that the entire point needs to be scaled by
√

ϵ
֕

, due to the geometry shown in Figure 07,
whereby 1 increment in the simulated 𝑥𝑦 plane is equal to

√
ϵ

֕
 increments in the original 𝑥𝑦 plane.

Figure 07: Geometric proof that the points need to be scaled by a factor of
√

ϵ
֕

.

Apart from the scale factor of
√

ϵ
֕

, it was found that when 𝑋 < 0, the point also needed to be scaled by −1.
This is due to the nature of the inverse tangent function involved. Hence, these scale factors were
implemented:

𝑃 ∗(𝑋, 𝑌 , 0) = গ{𝑋 ≥ 0: 1,𝑋 < 0:−1}
1

𝑧
ఉ2𝑋ϵ + 2𝑌 ϵ cosগtan−φ গ

𝑌

𝑋
ঘ + 𝜙 −

3𝜋

4
ঘ , {𝑋 ≥ 0: 1, 𝑋

< 0:−1}
1

𝑧
𝑘ఉ2𝑋ϵ + 2𝑌 ϵ sinগtan−φ গ

𝑌

𝑋
ঘ + 𝜙 −

3𝜋

4
ঘঘ

Now, 𝑍 needed to be accounted for. This was relatively easy, as it was previously found that the 𝑧 axis can
be made by connecting the points ५0,

√
φ−ֆɞ
√

ϵ
६ and ५0, −

√
φ−ֆɞ
√

ϵ
६. Hence ϵջ

√
φ−ֆɞ

√
ϵ֕

 or ջ
√

ϵ−ϵֆɞ

֕
 can be added to

the 𝑦-coordinate. This gives the final projection function, and
√

ϵ
֕

 can be factored out:

𝑃 ∗(𝑋, 𝑌 , 𝑍) = ভ{𝑋 ≥ 0: 1,𝑋 < 0:−1}
1

𝑧
ఉ2𝑋ϵ + 2𝑌 ϵ cosগtan−φ গ

𝑌

𝑋
ঘ + 𝜙 −

3𝜋

4
ঘ , {𝑋 ≥ 0: 1, 𝑋

< 0:−1}
1

𝑧
𝑘ఉ2𝑋ϵ + 2𝑌 ϵ sinগtan−φ গ

𝑌

𝑋
ঘ + 𝜙 −

3𝜋

4
ঘ +

𝑍
√

2 − 2𝑘ϵ

𝑧
ম

𝑃 ∗(𝑋, 𝑌 , 𝑍) =

√
2

𝑧
গ{𝑋 ≥ 0: 1, 𝑋 < 0:−1}ఉ𝑋ϵ + 𝑌 ϵ cosগtan−φ গ

𝑌

𝑋
ঘ + 𝜙 −

3𝜋

4
ঘ , {𝑋 ≥ 0: 1,𝑋

< 0:−1}𝑘ఉ𝑋ϵ + 𝑌 ϵ sinগtan−φ গ
𝑌

𝑋
ঘ + 𝜙 −

3𝜋

4
ঘ + 𝑍

√
1 − 𝑘ϵঘ

This is almost complete, except there is another problem when including the tan−φिպ
չी term, when both 𝑋

and 𝑌 are 0. This hence causes a Ј
Ј
 problem. Demos automatically handles պ

Ј
 cases, as lim

֓→±�
(tan−φ(𝑥)) = ᇎ

ϵ
,

hence outputs tan−φिպ
Јी = ᇎ

ϵ
. However, the equation breaks down when both 𝑋 and 𝑌 equal 0). This can be

simply fixed however, by using the fact that the point 𝑃(0,0,0) lies on the origin of the normal 𝑥𝑦 plane,
hence all the terms except for the 𝑍

√
2 − 2𝑘ϵ term become unnecessary. This gives:

𝑃 ∗(0,0, 𝑍) = ভ0,
𝑍

√
2 − 2𝑘ϵ

𝑧
ম

𝑃 ∗(0,0, 𝑍) = ভ0,
𝑍

√
2 − 2𝑘ϵ

𝑧
ম

Finally, these two cases can be combined as follows, to give the final projection function 𝑃 :

𝑃φ(𝑋, 𝑌 , 𝑍) =

√
2

𝑧
গ{𝑋 ≥ 0: 1,𝑋 < 0:−1}ఉ𝑋ϵ + 𝑌 ϵ cosগtan−φ গ

𝑌

𝑋
ঘ + 𝜙 −

3𝜋

4
ঘ , 𝑘{𝑋 ≥ 0: 1,𝑋

< 0:−1}ఉ𝑋ϵ + 𝑌 ϵ sinগtan−φ গ
𝑌

𝑋
ঘ + 𝜙 −

3𝜋

4
ঘ + 𝑍

√
1 − 𝑘ϵঘ

𝑃ϵ(𝑋, 𝑌 , 𝑍) = ভ0,
𝑍

√
2 − 2𝑘ϵ

𝑧
ম

𝑃(𝑋, 𝑌 , 𝑍) = ृ|𝑋| > 0: 𝑃φ(𝑋, 𝑌 , 𝑍), 𝑋 = 0: {|𝑌 | > 0: 𝑃φ(𝑋, 𝑌 , 𝑍), 𝑌 = 0:𝑃ϵ(𝑋, 𝑌 , 𝑍)}ॄ

Hence, this was implemented using the following LaTeX code, and can also be found under the “Visualizing
the 3D space” folder in the simulation:

P_{1}\left(X,Y,Z\right)=\frac{1}{z}\left(\left\{X\ge0:1,X<0:-
1\right\}\sqrt{2Y^{2}+2X^{2}}\cos\left(\tan^{-1}\left(\frac{Y}{X}\right)+\phi-
\frac{3\pi}{4}\right),\ k\left\{X\ge0:1,X<0:-1\right\}\sqrt{2Y^{2}+2X^{2}}\sin\left(\tan^{-
1}\left(\frac{Y}{X}\right)+\phi-\frac{3\pi}{4}\right)+Z\sqrt{2-2k^{2}}\right)
P_{2}\left(X,Y,Z\right)=\left(0,\ \frac{Z\sqrt{2-2k^{2}}}{z}\right)
P\left(X,Y,Z\right)=\left\{\left|X\right|>0:P_{1}\left(X,Y,Z\right),X=0:\left\{\left|Y\right|>0:P_{1
}\left(X,Y,Z\right),Y=0:P_{2}\left(X,Y,Z\right)\right\}\right\}

Implementing this projection function allows for points to be plotted on the new 3D space. An example of
this is shown in Figure 08, with 𝑃(1,−1,2).

Figure 08: Plotting 𝑃(1,−1,2)

| Section 6.2.1: Explaining the motions of three bodies interacting through gravity and deriving the equations
required for the simulation

Consider three bodies 𝑀φ, 𝑀ϵ and 𝑀ϯ, with positions 𝑀φ(𝑋φ, 𝑌φ, 𝑍φ), 𝑀ϵ(𝑋ϵ, 𝑌ϵ, 𝑍ϵ) and
𝑀ϯ(𝑋ϯ, 𝑌ϯ, 𝑍ϯ) respectively, where 𝑋φ, 𝑌φ,… 𝑋ϯ, 𝑌ϯ, 𝑍ϯ are all functions of time 𝑡. Furthermore, let 𝑀φ,
𝑀ϵ and 𝑀ϯ have masses of 𝑚φ, 𝑚ϵ and 𝑚ϯ respectively. Let 𝑀φ have an initial position of (𝑥φ, 𝑦φ, 𝑧φ), let
𝑀ϵ have an initial position of (𝑥ϵ, 𝑦ϵ, 𝑧ϵ). Let 𝑀ϯ have an initial position of (𝑥ϯ, 𝑦ϯ, 𝑧ϯ). Let 𝑀φ have an
initial velocity vector 𝑉φ with 𝑉φ = ॅ𝑣φ֓, 𝑣φ֔, 𝑣φ֕ॆ. In the same fashion, let 𝑀ϵ have velocity vector 𝑉ϵ =

ॅ𝑣ϵ֓, 𝑣ϵ֔, 𝑣ϵ֕ॆ and let 𝑀ϯ have velocity vector 𝑉ϯ = ॅ𝑣ϯ֓, 𝑣ϯ֔, 𝑣ϯ֕ॆ. Finally, let 𝐺 be the gravitational
constant.

The motions of the three bodies can be derived using both Newtonian or Lagrangian mechanics. However, the
use of Newtonian mechanics with 𝐹 ⃗ = 𝑚𝑎 ⃗requires more steps in this scenario (such as resolving vectors),
hence Lagrangian mechanics were used to derive the motions of the three bodies. The notation 𝑓 ̇to represent
տ
տ֏

𝑓 , and 𝑓 ̈to represent տɞ

տ֏ɞ 𝑓 will be used.

Consider first solving for 𝑋φ(𝑡). The kinetic energy for 𝑀φ can be found using the formula 𝐾.𝐸.= φ
ϵ
𝑚𝑣ϵ

[Khan Academy. (2022)] The total speed for 𝑀φ is the sum of the individual speeds in the 𝑥, 𝑦 and 𝑧
directions, which are 𝑋φ̇, 𝑌φ̇ and 𝑍φ̇ (As velocity is the derivative of position). This gives the total kinetic
energy of 𝑀φ:

𝐾.𝐸.=
1

2
𝑚φ𝑋φ̇

ϵ
+

1

2
𝑚φ𝑌φ̇

ϵ
+

1

2
𝑚φ𝑍φ̇

ϵ

Then, the potential energy of 𝑀φ can be found. The potential energy for one body in a system of two bodies,
is given by 𝑃.𝐸.= − ըֈȯֈɞ

֍
 where 𝑚φ and 𝑚ϵ are the masses of the two bodies, and 𝑟 is the distance

between the two bodies [Khan Academy. (2018)]. Note that this distance can be found using the Pythagoras
theorem, by taking the squares of the differences between the points, as shown below. Finally, for three
bodies, the total potential energy is the sum of the potential energies in each two-body system. Below is hence
the total potential energy for 𝑀φ:

𝑃 .𝐸.= −
𝐺𝑚φ𝑚ϵ

ఉ(𝑋φ − 𝑋ϵ)
ϵ + (𝑌φ − 𝑌ϵ)

ϵ + (𝑍φ − 𝑍ϵ)
ϵ
−

𝐺𝑚φ𝑚ϵ

ఉ(𝑋φ − 𝑋ϵ)
ϵ + (𝑌φ − 𝑌ϵ)

ϵ + (𝑍φ − 𝑍ϵ)
ϵ

We then have the Lagrangian:

𝐿 = 𝐾. 𝐸. −𝑃. 𝐸.

This can now be substituted into the Euler-Lagrange equation as is typical with Lagrangian mechanics, which
has the following form:

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥φ̇

=
𝜕𝐿

𝜕𝑥φ

Differentiating and simplifying, we have:

𝑑

𝑑𝑡
𝑚φ𝑋φ̇ = −

𝐺𝑚φ𝑚ϵ(𝑋φ − 𝑋ϵ)

((𝑋φ − 𝑋ϵ)
ϵ + (𝑌φ − 𝑌ϵ)

ϵ + (𝑍φ − 𝑍ϵ)
ϵ)

ϯ
ϵ

−
𝐺𝑚φ𝑚ϯ(𝑋φ − 𝑋ϯ)

((𝑋φ − 𝑋ϯ)
ϵ + (𝑌φ − 𝑌ϯ)

ϵ + (𝑍φ − 𝑍ϯ)
ϵ)

ϯ
ϵ

𝑚φ𝑋φ̈ = −
𝐺𝑚φ𝑚ϵ(𝑋φ − 𝑋ϵ)

((𝑋φ − 𝑋ϵ)
ϵ + (𝑌φ − 𝑌ϵ)

ϵ + (𝑍φ − 𝑍ϵ)
ϵ)

ϯ
ϵ

−
𝐺𝑚φ𝑚ϯ(𝑋φ − 𝑋ϯ)

((𝑋φ − 𝑋ϯ)
ϵ + (𝑌φ − 𝑌ϯ)

ϵ + (𝑍φ − 𝑍ϯ)
ϵ)

ϯ
ϵ

𝑋φ̈ =
𝐺𝑚ϵ(𝑋ϵ − 𝑋φ)

((𝑋φ − 𝑋ϵ)
ϵ + (𝑌φ − 𝑌ϵ)

ϵ + (𝑍φ − 𝑍ϵ)
ϵ)

ϯ
ϵ

+
𝐺𝑚ϯ(𝑋ϯ − 𝑋φ)

((𝑋φ − 𝑋ϯ)
ϵ + (𝑌φ − 𝑌ϯ)

ϵ + (𝑍φ − 𝑍ϯ)
ϵ)

ϯ
ϵ

Following the same process for the remaining 8 functions, which are the 𝑥, 𝑦 and 𝑧 co-ordinates for 𝑀φ, 𝑀ϵ
and 𝑀ϯ, we have the final differential equations which model the 3 bodies interacting through gravity:

𝑋φ̈ =
𝐺𝑚ϵ(𝑋ϵ − 𝑋φ)

((𝑋φ − 𝑋ϵ)
ϵ + (𝑌φ − 𝑌ϵ)

ϵ + (𝑍φ − 𝑍ϵ)
ϵ)

ϯ
ϵ

+
𝐺𝑚ϯ(𝑋ϯ − 𝑋φ)

((𝑋φ − 𝑋ϯ)
ϵ + (𝑌φ − 𝑌ϯ)

ϵ + (𝑍φ − 𝑍ϯ)
ϵ)

ϯ
ϵ

𝑌φ̈ =
𝐺𝑚ϵ(𝑌ϵ − 𝑌φ)

((𝑋φ − 𝑋ϵ)
ϵ + (𝑌φ − 𝑌ϵ)

ϵ + (𝑍φ − 𝑍ϵ)
ϵ)

ϯ
ϵ

+
𝐺𝑚ϯ(𝑌ϯ − 𝑌φ)

((𝑋φ − 𝑋ϯ)
ϵ + (𝑌φ − 𝑌ϯ)

ϵ + (𝑍φ − 𝑍ϯ)
ϵ)

ϯ
ϵ

𝑍φ̈ =
𝐺𝑚ϵ(𝑍ϵ − 𝑍φ)

((𝑋φ − 𝑋ϵ)
ϵ + (𝑌φ − 𝑌ϵ)

ϵ + (𝑍φ − 𝑍ϵ)
ϵ)

ϯ
ϵ

+
𝐺𝑚ϯ(𝑍ϯ − 𝑍φ)

((𝑋φ − 𝑋ϯ)
ϵ + (𝑌φ − 𝑌ϯ)

ϵ + (𝑍φ − 𝑍ϯ)
ϵ)

ϯ
ϵ

𝑋ϵ̈ =
𝐺𝑚φ(𝑋φ − 𝑋ϵ)

((𝑋ϵ − 𝑋φ)
ϵ + (𝑌ϵ − 𝑌φ)

ϵ + (𝑍ϵ − 𝑍φ)
ϵ)

ϯ
ϵ

+
𝐺𝑚ϯ(𝑋ϯ − 𝑋ϵ)

((𝑋ϵ − 𝑋ϯ)
ϵ + (𝑌ϵ − 𝑌ϯ)

ϵ + (𝑍ϵ − 𝑍ϯ)
ϵ)

ϯ
ϵ

𝑌ϵ̈ =
𝐺𝑚φ(𝑌φ − 𝑌ϵ)

((𝑋ϵ − 𝑋φ)
ϵ + (𝑌ϵ − 𝑌φ)

ϵ + (𝑍ϵ − 𝑍φ)
ϵ)

ϯ
ϵ

+
𝐺𝑚ϯ(𝑌ϯ − 𝑌ϵ)

((𝑋ϵ − 𝑋ϯ)
ϵ + (𝑌ϵ − 𝑌ϯ)

ϵ + (𝑍ϵ − 𝑍ϯ)
ϵ)

ϯ
ϵ

𝑍ϵ̈ =
𝐺𝑚φ(𝑍φ − 𝑍ϵ)

((𝑋ϵ − 𝑋φ)
ϵ + (𝑌ϵ − 𝑌φ)

ϵ + (𝑍ϵ − 𝑍φ)
ϵ)

ϯ
ϵ

+
𝐺𝑚ϯ(𝑍ϯ − 𝑍ϵ)

((𝑋ϵ − 𝑋ϯ)
ϵ + (𝑌ϵ − 𝑌ϯ)

ϵ + (𝑍ϵ − 𝑍ϯ)
ϵ)

ϯ
ϵ

𝑋ϯ̈ =
𝐺𝑚φ(𝑋φ − 𝑋ϯ)

((𝑋ϯ − 𝑋φ)
ϵ + (𝑌ϯ − 𝑌φ)

ϵ + (𝑍ϯ − 𝑍φ)
ϵ)

ϯ
ϵ

+
𝐺𝑚ϵ(𝑋ϵ − 𝑋ϯ)

((𝑋ϯ − 𝑋ϵ)
ϵ + (𝑌ϯ − 𝑌ϵ)

ϵ + (𝑍ϯ − 𝑍ϵ)
ϵ)

ϯ
ϵ

𝑌ϯ̈ =
𝐺𝑚φ(𝑌φ − 𝑌ϯ)

((𝑋ϯ − 𝑋φ)
ϵ + (𝑌ϯ − 𝑌φ)

ϵ + (𝑍ϯ − 𝑍φ)
ϵ)

ϯ
ϵ

+
𝐺𝑚ϵ(𝑌ϵ − 𝑌ϯ)

((𝑋ϯ − 𝑋ϵ)
ϵ + (𝑌ϯ − 𝑌ϵ)

ϵ + (𝑍ϯ − 𝑍ϵ)
ϵ)

ϯ
ϵ

𝑍ϯ̈ =
𝐺𝑚φ(𝑍φ − 𝑍ϯ)

((𝑋ϯ − 𝑋φ)
ϵ + (𝑌ϯ − 𝑌φ)

ϵ + (𝑍ϯ − 𝑍φ)
ϵ)

ϯ
ϵ

+
𝐺𝑚ϵ(𝑍ϵ − 𝑍ϯ)

((𝑋ϯ − 𝑋ϵ)
ϵ + (𝑌ϯ − 𝑌ϵ)

ϵ + (𝑍ϯ − 𝑍ϵ)
ϵ)

ϯ
ϵ

| Section 6.2.2: Approximating Solutions to the Differential Equations

The equations derived in the previous section have no analytic solution, meaning that 𝑋φ, 𝑌φ,… 𝑋ϯ, 𝑌ϯ, 𝑍ϯ
cannot be written in terms of finite mathematical expressions. However, the solutions can be approximated.
Consider the following definition of the first derivative of a function 𝑓 of time 𝑡:

𝑑𝑓

𝑑𝑡
= lim

Ⴓ→Ј

𝑓(𝑡 + Δ) − 𝑓(𝑡)

Δ

Now, substituting this definition into itself, results in the definition of the second derivative:

𝑑ϵ𝑓

𝑑𝑡ϵ
= lim

Ⴓ→Ј

𝑓(𝑡 + 2Δ) − 𝑓(𝑡 + Δ)
Δ

−
𝑓(𝑡 + Δ) − 𝑓(𝑡)

Δ
Δ

Simplifying, we have:

𝑑ϵ𝑓

𝑑𝑡ϵ
= lim

Ⴓ→Ј

𝑓(𝑡 + 2Δ) − 2𝑓(𝑡 + Δ) + 𝑓(𝑡)

Δϵ

As Δ approaches 0, we also have that the derivative at 𝑡 approaches being the same as the derivative at 𝑡 −

Δ. Hence substituting 𝑡 − Δ for 𝑡, we also have the following definition of the second derivative:

𝑑ϵ𝑓

𝑑𝑡ϵ
= lim

Ⴓ→Ј

𝑓(𝑡 + Δ) − 2𝑓(𝑡) + 𝑓(𝑡 − Δ)

Δϵ

Now, using 𝑋φ(𝑡) as an example, we have the equation derived before:

𝑋φ̈ =
𝐺𝑚ϵ(𝑋ϵ − 𝑋φ)

((𝑋φ − 𝑋ϵ)
ϵ + (𝑌φ − 𝑌ϵ)

ϵ + (𝑍φ − 𝑍ϵ)
ϵ)

ϯ
ϵ

+
𝐺𝑚ϯ(𝑋ϯ − 𝑋φ)

((𝑋φ − 𝑋ϯ)
ϵ + (𝑌φ − 𝑌ϯ)

ϵ + (𝑍φ − 𝑍ϯ)
ϵ)

ϯ
ϵ

Hence, for sufficiently small Δ the following approximation holds:

𝑋φ(𝑡 + Δ) − 2𝑋φ(𝑡) + 𝑋φ(𝑡 − Δ)

Δϵ

≈
𝐺𝑚ϵ(𝑋ϵ − 𝑋φ)

((𝑋φ − 𝑋ϵ)
ϵ + (𝑌φ − 𝑌ϵ)

ϵ + (𝑍φ − 𝑍ϵ)
ϵ)

ϯ
ϵ

+
𝐺𝑚ϯ(𝑋ϯ − 𝑋φ)

((𝑋φ − 𝑋ϯ)
ϵ + (𝑌φ − 𝑌ϯ)

ϵ + (𝑍φ − 𝑍ϯ)
ϵ)

ϯ
ϵ

Hence, if 𝑋φ(𝑡) and 𝑋φ(𝑡 − Δ) is known, 𝑋φ(𝑡 + Δ𝑡) can be found. This can be rearranged to give the
following recursive formula which can ultimately used to approximate solutions to the differential equations:

𝑋φ(𝑡 + Δ) ≈
𝐺𝑚ϵ(𝑋ϵ − 𝑋φ)Δ

ϵ

((𝑋φ − 𝑋ϵ)
ϵ + (𝑌φ − 𝑌ϵ)

ϵ + (𝑍φ − 𝑍ϵ)
ϵ)

ϯ
ϵ

+
𝐺𝑚ϯ(𝑋ϯ − 𝑋φ)Δ

ϵ

((𝑋φ − 𝑋ϯ)
ϵ + (𝑌φ − 𝑌ϯ)

ϵ + (𝑍φ − 𝑍ϯ)
ϵ)

ϯ
ϵ

+ 2𝑋φ(𝑡) − 𝑋φ(𝑡 − Δ)

Hence, to solve the differential equations, 𝑋φ, 𝑌φ, …𝑋ϯ, 𝑌ϯ, 𝑍ϯ were written in Desmos as lists of two
numbers, one for the respective function calculated at 𝑡 − Δ and the other for the respective function
calculated at 𝑡. For example, 𝑋φ(𝑡) was written in the form shown below:

𝑋φ = [𝑋φ(𝑡 − Δ),𝑋φ(𝑡)]

An action was defined in Desmos that, every millisecond, would use the recursive formula found previously to
calculate 𝑋φ(𝑡 + Δ), with a very small value of Δ. Then, the list would be updated to the following:

𝑋φ = [𝑋φ(𝑡),𝑋φ(𝑡 + Δ)]

This means that 𝑋φ[2] (which is the notation used to indicate the second number in the list 𝑋φ) would
correspond to 𝑋φ(𝑡) at any time 𝑡. This was how the Desmos simulation was ultimately run, with an action
𝐴φ being designed to perform the following recursive action every 1 millisecond:

𝐴φ = 𝑋φ →

⎣
⎢
⎡𝑋φ[2],

𝐺𝑚ϵ(𝑋ϵ[2] − 𝑋φ[2])Δϵ

((𝑋φ[2] − 𝑋ϵ[2])ϵ + (𝑌φ[2] − 𝑌ϵ[2])ϵ + (𝑍φ[2] − 𝑍ϵ[2])ϵ)
ϯ
ϵ

+
𝐺𝑚ϯ(𝑋ϯ[2] − 𝑋φ[2])Δϵ

((𝑋φ[2] − 𝑋ϯ[2])ϵ + (𝑌φ[2] − 𝑌ϯ[2])ϵ + (𝑍φ[2] − 𝑍ϯ[2])ϵ)
ϯ
ϵ

+ 2𝑋φ[2] − 𝑋φ[1]

⎦
⎥
⎤

As can be seen, performing this action updates the 𝑋φ from 𝑋φ = [𝑋φ(𝑡),𝑋φ(𝑡 + Δ)] to 𝑋φ =

[𝑋φ(𝑡 + Δ),𝑋φ(𝑡 + 2Δ)]. A similar process was used to define the remaining 8 functions
𝑌φ, 𝑍φ,𝑋ϵ … 𝑋ϯ, 𝑌ϯ, 𝑍ϯ in terms of recursive formulae and lists, and then actions 𝐴ϵ,𝐴ϯ,𝐴Κ …𝐴΅,𝐴ν were
created in the same fashion for these functions. These recursive actions are shown below:

𝐴ϵ = 𝑌φ →

⎣
⎢
⎡𝑌φ[2],

𝐺𝑚ϵ(𝑌ϵ[2] − 𝑌φ[2])

((𝑋φ[2] − 𝑋ϵ[2])ϵ + (𝑌φ[2] − 𝑌ϵ[2])ϵ + (𝑍φ[2] − 𝑍ϵ[2])ϵ)
ϯ
ϵ

+
𝐺𝑚ϯ(𝑌ϯ[2] − 𝑌φ[2])

((𝑋φ[2] − 𝑋ϯ[2])
ϵ + (𝑌φ[2] − 𝑌ϯ[2])ϵ + (𝑍φ[2] − 𝑍ϯ[2])

ϵ)
ϯ
ϵ

+ 2𝑌φ[2] − 𝑌φ[1]

⎦
⎥
⎤

𝐴ϯ = 𝑍φ →

⎣
⎢
⎡𝑍φ[2],

𝐺𝑚ϵ(𝑍ϵ[2] − 𝑍φ[2])

((𝑋φ[2] − 𝑋ϵ[2])ϵ + (𝑌φ[2] − 𝑌ϵ[2])ϵ + (𝑍φ[2] − 𝑍ϵ[2])ϵ)
ϯ
ϵ

+
𝐺𝑚ϯ(𝑍ϯ[2] − 𝑍φ[2])

((𝑋φ[2] − 𝑋ϯ[2])ϵ + (𝑌φ[2] − 𝑌ϯ[2])ϵ + (𝑍φ[2] − 𝑍ϯ[2])ϵ)
ϯ
ϵ

+ 2𝑍φ[2] − 𝑍φ[1]

⎦
⎥
⎤

𝐴Κ = 𝑋ϵ →

⎣
⎢
⎡𝑋ϵ[2],

𝐺𝑚φ(𝑋φ[2] − 𝑋ϵ[2])

((𝑋ϵ[2] − 𝑋φ[2])ϵ + (𝑌ϵ[2] − 𝑌φ[2])ϵ + (𝑍ϵ[2] − 𝑍φ[2])ϵ)
ϯ
ϵ

+
𝐺𝑚ϯ(𝑋ϯ[2] − 𝑋ϵ[2])

((𝑋ϵ[2] − 𝑋ϯ[2])ϵ + (𝑌ϵ[2] − 𝑌ϯ[2])ϵ + (𝑍ϵ[2] − 𝑍ϯ[2])ϵ)
ϯ
ϵ

+ 2𝑋ϵ[2] − 𝑋ϵ[1]

⎦
⎥
⎤

𝐴Θ = 𝑌ϵ →

⎣
⎢
⎡𝑌ϵ[2],

𝐺𝑚φ(𝑌φ[2] − 𝑌ϵ[2])

((𝑋ϵ[2] − 𝑋φ[2])ϵ + (𝑌ϵ[2] − 𝑌φ[2])ϵ + (𝑍ϵ[2] − 𝑍φ[2])ϵ)
ϯ
ϵ

+
𝐺𝑚ϯ(𝑌ϯ[2] − 𝑌ϵ[2])

((𝑋ϵ[2] − 𝑋ϯ[2])
ϵ + (𝑌ϵ[2] − 𝑌ϯ[2])ϵ + (𝑍ϵ[2] − 𝑍ϯ[2])

ϵ)
ϯ
ϵ

+ 2𝑌ϵ[2] − 𝑌ϵ[1]

⎦
⎥
⎤

𝐴ϩ = 𝑍ϵ →

⎣
⎢
⎡𝑍ϵ[2],

𝐺𝑚φ(𝑍φ[2] − 𝑍ϵ[2])

((𝑋ϵ[2] − 𝑋φ[2])ϵ + (𝑌ϵ[2] − 𝑌φ[2])ϵ + (𝑍ϵ[2] − 𝑍φ[2])ϵ)
ϯ
ϵ

+
𝐺𝑚ϯ(𝑍ϯ[2] − 𝑍ϵ[2])

((𝑋ϵ[2] − 𝑋ϯ[2])ϵ + (𝑌ϵ[2] − 𝑌ϯ[2])ϵ + (𝑍ϵ[2] − 𝑍ϯ[2])ϵ)
ϯ
ϵ

+ 2𝑍ϵ[2] − 𝑍ϵ[1]

⎦
⎥
⎤

𝐴Ϩ = 𝑋ϯ →

⎣
⎢
⎡𝑋ϯ[2],

𝐺𝑚φ(𝑋φ[2] − 𝑋ϯ[2])

((𝑋ϯ[2] − 𝑋φ[2])ϵ + (𝑌ϯ[2] − 𝑌φ[2])ϵ + (𝑍ϯ[2] − 𝑍φ[2])
ϵ)

ϯ
ϵ

+
𝐺𝑚ϵ(𝑋ϵ[2] − 𝑋ϯ[2])

((𝑋ϯ[2] − 𝑋ϵ[2])ϵ + (𝑌ϯ[2] − 𝑌ϵ[2])ϵ + (𝑍ϯ[2] − 𝑍ϵ[2])ϵ)
ϯ
ϵ

+ 2𝑋ϯ[2] − 𝑋ϯ[1]

⎦
⎥
⎤

𝐴΅ = 𝑌ϯ →

⎣
⎢
⎡𝑌ϯ[2],

𝐺𝑚φ(𝑌φ[2] − 𝑌ϯ[2])

((𝑋ϯ[2] − 𝑋φ[2])ϵ + (𝑌ϯ[2] − 𝑌φ[2])ϵ + (𝑍ϯ[2] − 𝑍φ[2])ϵ)
ϯ
ϵ

+
𝐺𝑚ϵ(𝑌ϵ[2] − 𝑌ϯ[2])

((𝑋ϯ[2] − 𝑋ϵ[2])
ϵ + (𝑌ϯ[2] − 𝑌ϵ[2])ϵ + (𝑍ϯ[2] − 𝑍ϵ[2])

ϵ)
ϯ
ϵ

+ 2𝑌ϯ[2] − 𝑌ϯ[1]

⎦
⎥
⎤

𝐴ν = 𝑍ϯ →

⎣
⎢
⎡𝑍ϯ[2],

𝐺𝑚φ(𝑍φ[2] − 𝑍ϯ[2])

((𝑋ϯ[2] − 𝑋φ[2])ϵ + (𝑌ϯ[2] − 𝑌φ[2])ϵ + (𝑍ϯ[2] − 𝑍φ[2])ϵ)
ϯ
ϵ

+
𝐺𝑚ϵ(𝑍ϵ[2] − 𝑍ϯ[2])

((𝑋ϯ[2] − 𝑋ϵ[2])ϵ + (𝑌ϯ[2] − 𝑌ϵ[2])ϵ + (𝑍ϯ[2] − 𝑍ϵ[2])ϵ)
ϯ
ϵ

+ 2𝑍ϯ[2] − 𝑍ϯ[1]

⎦
⎥
⎤

Hence, this means that the positions of the three bodies were written in Desmos as 𝑀φ(𝑋φ[2], 𝑌φ[2], 𝑍φ[2]),
𝑀ϵ(𝑋ϵ[2], 𝑌ϵ[2], 𝑍ϵ[2]), and 𝑀ϯ(𝑋ϯ[2], 𝑌ϯ[2], 𝑍ϯ[2]), as it is the second element in each of the lists which
correspond to the value of each of the functions at any given time 𝑡.

Similarly, to update the velocity vectors 𝑉φ, 𝑉ϵ and 𝑉ϯ, the following actions were also defined. As can be
seen, these actions also simply make use of the 𝑣 = տ

֏
 formula:

𝐴φЈ = 𝑉φ → ঝ
𝑋φ[2] − 𝑋φ[1]

Δ
,
𝑌φ[2] − 𝑌φ[1]

Δ
,
𝑍φ[2] − 𝑍φ[1]

Δ
ঞ

𝐴φφ = 𝑉ϵ → ঝ
𝑋ϵ[2] − 𝑋ϵ[1]

Δ
,
𝑌ϵ[2] − 𝑌ϵ[1]

Δ
,
𝑍ϵ[2] − 𝑍ϵ[1]

Δ
ঞ

𝐴φϵ = 𝑉ϯ → ঝ
𝑋ϯ[2] − 𝑋ϯ[1]

Δ
,
𝑌ϯ[2] − 𝑌ϯ[1]

Δ
,
𝑍ϯ[2] − 𝑍ϯ[1]

Δ
ঞ

Then, the action 𝑈 was set such that 𝑈 = 𝐴φ, 𝐴ϵ, 𝐴ϯ, 𝐴Κ, 𝐴Θ, 𝐴ϩ, 𝐴Ϩ, 𝐴΅, 𝐴ν, 𝐴φЈ, 𝐴φφ, 𝐴φϵ, meaning when
𝑈 is run each millisecond using the Desmos “ticker” function, the positions and velocities for the 3 bodies are
updated.

However, note that there is one case in which the recursive formulae found do not work. As finding the value
of each of 𝑋φ, 𝑌φ, …𝑋ϯ, 𝑌ϯ, 𝑍ϯ at 𝑡 + Δ requires knowing the value of the functions at 𝑡 and at 𝑡 − Δ, when
𝑡 = 0, (or in the initial conditions) there is no known value of each of the functions at 𝑡 − Δ. However, there
is a quick method to avoid this, which allows for the initial velocities of the 3 bodies to also be accounted for.
Consider 𝑋φ as an example. Note that, if the original speed of 𝑀φ in the 𝑥 direction was previously said to
be 𝑣φ֓, then using the simple formula for speed of 𝑣 = տ

֏
, we have:

𝑣֓ =
𝑋φ(0) − 𝑋φ(0 − Δ)

Δ

𝑋φ(0 − Δ) = 𝑋φ(0) − Δ𝑣֓

Given that it was said before that the initial position for 𝑀φ is (𝑥φ, 𝑦φ, 𝑧φ), we have:

𝑋φ(0 − Δ) = 𝑥φ − Δ𝑣֓

This further means that the initial conditions for the list 𝑋φ is:

𝑋φ = [𝑥φ − Δ𝑣φ֓, 𝑥φ]

In a similar way, the initial conditions for list 𝑌φ is [𝑦φ − Δ𝑣φ֔, 𝑦φ], and so on for 𝑍φ,𝑋ϵ … 𝑋ϯ, 𝑌ϯ, 𝑍ϯ.
Hence, when the “Reset” button is pressed, 𝑋φ is reset to [𝑥φ − Δ𝑣φ֓, 𝑥φ], 𝑌φ is set to ॅ𝑦φ − Δ𝑣φ֔, 𝑦φॆ, and
so on for the remaining 7 functions for the positions of the 3 bodies.

Hence, to summarise, the numerical solutions to the differential equations are found in the following three
steps:

1. The positions of 𝑀φ, 𝑀ϵ and 𝑀ϯ are stored as 𝑀φ(𝑋φ[2], 𝑌φ[2], 𝑍φ[2]), 𝑀ϵ(𝑋ϵ[2], 𝑌ϵ[2], 𝑍ϵ[2]),
and 𝑀ϯ(𝑋ϯ[2], 𝑌ϯ[2],𝑍ϯ[2]), and with initial positions 𝑀φ(𝑥φ, 𝑦φ, 𝑧φ), 𝑀ϵ(𝑥ϵ, 𝑦ϵ, 𝑧ϵ) and
𝑀ϯ(𝑥ϯ, 𝑦ϯ, 𝑧ϯ) respectively. The velocity vectors for 𝑀φ, 𝑀ϵ and 𝑀ϯ are stored as 𝑉φ, 𝑉ϵ and 𝑉ϯ,
with initial conditions 𝑉φ = ॅ𝑣φ֓, 𝑣φ֔, 𝑣φ֕ॆ, 𝑉ϵ = ॅ𝑣ϵ֓, 𝑣ϵ֔, 𝑣ϵ֕ॆ and 𝑉ϯ = ॅ𝑣ϯ֓, 𝑣ϯ֔, 𝑣ϯ֕ॆ.

2. Recursive formulae derived from approximations for the second derivative are used to calculate the
values of each of these functions at 𝑡 + Δ using the known values at 𝑡 and 𝑡 − Δ. This is done using
an action 𝑈 which runs every millisecond after the “Start/Stop” button is pressed.

3. When the “Reset” button is pressed, the initial conditions are reset.

Hence, this was implemented using the following LaTeX code, and can also be found under the “Position and
Velocity Updates” folder in the simulation:

X_{1}=\left[_,_\right]
Y_{1}=\left[_,_\right]
Z_{1}=\left[_,_\right]
X_{2}=\left[_,_\right]
Y_{2}=\left[_,_\right]
Z_{2}=\left[_,_\right]
X_{3}=\left[_,_\right]
Y_{3}=\left[_,_\right]
Z_{3}=\left[_,_\right]
M_{1}=P\left(X_{1}\left[2\right],Y_{1}\left[2\right],Z_{1}\left[2\right]\right)
M_{2}=P\left(X_{2}\left[2\right],Y_{2}\left[2\right],Z_{2}\left[2\right]\right)
M_{3}=P\left(X_{3}\left[2\right],Y_{3}\left[2\right],Z_{3}\left[2\right]\right)
V_{1}=\left[_,_,_\right]
V_{2}=\left[_,_,_\right]
V_{3}=\left[_,_,_\right]
A_{1}=X_{1}\to\left[X_{1}\left[2\right],\frac{Gm_{2}\left(X_{2}\left[2\right]-
X_{1}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{1}\left[2\right]-
X_{2}\left[2\right]\right)^{2}+\left(Y_{1}\left[2\right]-
Y_{2}\left[2\right]\right)^{2}+\left(Z_{1}\left[2\right]-
Z_{2}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+\frac{Gm_{3}\left(X_{3}\left[2\right]-
X_{1}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{1}\left[2\right]-
X_{3}\left[2\right]\right)^{2}+\left(Y_{1}\left[2\right]-
Y_{3}\left[2\right]\right)^{2}+\left(Z_{1}\left[2\right]-
Z_{3}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+2X_{1}\left[2\right]-X_{1}\left[1\right]\right]

A_{2}=Y_{1}\to\left[Y_{1}\left[2\right],\frac{Gm_{2}\left(Y_{2}\left[2\right]-
Y_{1}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{1}\left[2\right]-
X_{2}\left[2\right]\right)^{2}+\left(Y_{1}\left[2\right]-
Y_{2}\left[2\right]\right)^{2}+\left(Z_{1}\left[2\right]-
Z_{2}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+\frac{Gm_{3}\left(Y_{3}\left[2\right]-
Y_{1}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{1}\left[2\right]-
X_{3}\left[2\right]\right)^{2}+\left(Y_{1}\left[2\right]-
Y_{3}\left[2\right]\right)^{2}+\left(Z_{1}\left[2\right]-
Z_{3}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+2Y_{1}\left[2\right]-Y_{1}\left[1\right]\right]
A_{3}=Z_{1}\to\left[Z_{1}\left[2\right],\frac{Gm_{2}\left(Z_{2}\left[2\right]-
Z_{1}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{1}\left[2\right]-
X_{2}\left[2\right]\right)^{2}+\left(Y_{1}\left[2\right]-
Y_{2}\left[2\right]\right)^{2}+\left(Z_{1}\left[2\right]-
Z_{2}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+\frac{Gm_{3}\left(Z_{3}\left[2\right]-
Z_{1}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{1}\left[2\right]-
X_{3}\left[2\right]\right)^{2}+\left(Y_{1}\left[2\right]-
Y_{3}\left[2\right]\right)^{2}+\left(Z_{1}\left[2\right]-
Z_{3}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+2Z_{1}\left[2\right]-Z_{1}\left[1\right]\right]
A_{4}=X_{2}\to\left[X_{2}\left[2\right],\frac{Gm_{1}\left(X_{1}\left[2\right]-
X_{2}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{2}\left[2\right]-
X_{1}\left[2\right]\right)^{2}+\left(Y_{2}\left[2\right]-
Y_{1}\left[2\right]\right)^{2}+\left(Z_{2}\left[2\right]-
Z_{1}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+\frac{Gm_{3}\left(X_{3}\left[2\right]-
X_{2}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{2}\left[2\right]-
X_{3}\left[2\right]\right)^{2}+\left(Y_{2}\left[2\right]-
Y_{3}\left[2\right]\right)^{2}+\left(Z_{2}\left[2\right]-
Z_{3}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+2X_{2}\left[2\right]-X_{2}\left[1\right]\right]
A_{5}=Y_{2}\to\left[Y_{2}\left[2\right],\frac{Gm_{1}\left(Y_{1}\left[2\right]-
Y_{2}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{2}\left[2\right]-
X_{1}\left[2\right]\right)^{2}+\left(Y_{2}\left[2\right]-
Y_{1}\left[2\right]\right)^{2}+\left(Z_{2}\left[2\right]-
Z_{1}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+\frac{Gm_{3}\left(Y_{3}\left[2\right]-
Y_{2}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{2}\left[2\right]-
X_{3}\left[2\right]\right)^{2}+\left(Y_{2}\left[2\right]-
Y_{3}\left[2\right]\right)^{2}+\left(Z_{2}\left[2\right]-
Z_{3}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+2Y_{2}\left[2\right]-Y_{2}\left[1\right]\right]
A_{6}=Z_{2}\to\left[Z_{2}\left[2\right],\frac{Gm_{1}\left(Z_{1}\left[2\right]-
Z_{2}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{2}\left[2\right]-
X_{1}\left[2\right]\right)^{2}+\left(Y_{2}\left[2\right]-
Y_{1}\left[2\right]\right)^{2}+\left(Z_{2}\left[2\right]-
Z_{1}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+\frac{Gm_{3}\left(Z_{3}\left[2\right]-
Z_{2}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{2}\left[2\right]-
X_{3}\left[2\right]\right)^{2}+\left(Y_{2}\left[2\right]-

Y_{3}\left[2\right]\right)^{2}+\left(Z_{2}\left[2\right]-
Z_{3}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+2Z_{2}\left[2\right]-Z_{2}\left[1\right]\right]
A_{7}=X_{3}\to\left[X_{3}\left[2\right],\frac{Gm_{1}\left(X_{1}\left[2\right]-
X_{3}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{3}\left[2\right]-
X_{1}\left[2\right]\right)^{2}+\left(Y_{3}\left[2\right]-
Y_{1}\left[2\right]\right)^{2}+\left(Z_{3}\left[2\right]-
Z_{1}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+\frac{Gm_{2}\left(X_{2}\left[2\right]-
X_{3}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{3}\left[2\right]-
X_{2}\left[2\right]\right)^{2}+\left(Y_{3}\left[2\right]-
Y_{2}\left[2\right]\right)^{2}+\left(Z_{3}\left[2\right]-
Z_{2}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+2X_{3}\left[2\right]-X_{3}\left[1\right]\right]
A_{8}=Y_{3}\to\left[Y_{3}\left[2\right],\frac{Gm_{1}\left(Y_{1}\left[2\right]-
Y_{3}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{3}\left[2\right]-
X_{1}\left[2\right]\right)^{2}+\left(Y_{3}\left[2\right]-
Y_{1}\left[2\right]\right)^{2}+\left(Z_{3}\left[2\right]-
Z_{1}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+\frac{Gm_{2}\left(Y_{2}\left[2\right]-
Y_{3}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{3}\left[2\right]-
X_{2}\left[2\right]\right)^{2}+\left(Y_{3}\left[2\right]-
Y_{2}\left[2\right]\right)^{2}+\left(Z_{3}\left[2\right]-
Z_{2}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+2Y_{3}\left[2\right]-Y_{3}\left[1\right]\right]
A_{9}=Z_{3}\to\left[Z_{3}\left[2\right],\frac{Gm_{1}\left(Z_{1}\left[2\right]-
Z_{3}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{3}\left[2\right]-
X_{1}\left[2\right]\right)^{2}+\left(Y_{3}\left[2\right]-
Y_{1}\left[2\right]\right)^{2}+\left(Z_{3}\left[2\right]-
Z_{1}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+\frac{Gm_{2}\left(Z_{2}\left[2\right]-
Z_{3}\left[2\right]\right)\Delta^{2}}{\left(\left(X_{3}\left[2\right]-
X_{2}\left[2\right]\right)^{2}+\left(Y_{3}\left[2\right]-
Y_{2}\left[2\right]\right)^{2}+\left(Z_{3}\left[2\right]-
Z_{2}\left[2\right]\right)^{2}\right)^{\frac{3}{2}}}+2Z_{3}\left[2\right]-Z_{3}\left[1\right]\right]
A_{10}=V_{1}\to\left[\frac{X_{1}\left[2\right]-
X_{1}\left[1\right]}{\Delta},\frac{Y_{1}\left[2\right]-
Y_{1}\left[1\right]}{\Delta},\frac{Z_{1}\left[2\right]-Z_{1}\left[1\right]}{\Delta}\right]
A_{11}=V_{2}\to\left[\frac{X_{2}\left[2\right]-
X_{2}\left[1\right]}{\Delta},\frac{Y_{2}\left[2\right]-
Y_{2}\left[1\right]}{\Delta},\frac{Z_{2}\left[2\right]-Z_{2}\left[1\right]}{\Delta}\right]
A_{12}=V_{3}\to\left[\frac{X_{3}\left[2\right]-
X_{3}\left[1\right]}{\Delta},\frac{Y_{3}\left[2\right]-
Y_{3}\left[1\right]}{\Delta},\frac{Z_{3}\left[2\right]-Z_{3}\left[1\right]}{\Delta}\right]
U=A_{1},A_{2},A_{3},A_{4},A_{5},A_{6},A_{7},A_{8},A_{9},A_{10},A_{11},A_{12}

This was further implemented using the following LaTeX code, and can also be found under the “Velocity
Vectors” folder in the simulation:

\left[M_{1},P\left(X_{1}\left[2\right]+V_{1}\left[1\right],Y_{1}\left[2\right]+V_{1}\left[2\right],Z
{1}\left[2\right]+V{1}\left[3\right]\right)\right]

\left[M_{2},P\left(X_{2}\left[2\right]+V_{2}\left[1\right],Y_{2}\left[2\right]+V_{2}\left[2\right],Z
{2}\left[2\right]+V{2}\left[3\right]\right)\right]
\left[M_{3},P\left(X_{3}\left[2\right]+V_{3}\left[1\right],Y_{3}\left[2\right]+V_{3}\left[2\right],Z
{3}\left[2\right]+V{3}\left[3\right]\right)\right]

This was further implemented using the following LaTeX code, and can also be found under the “User
Interface” folder in the simulation:

\left(\frac{35}{24},0.6\right)
R_{eset}=X_{1}\to\left[x_{1}-\Delta v_{1x},x_{1}\right],Y_{1}\to\left[y_{1}-\Delta
v_{1y},y_{1}\right],Z_{1}\to\left[z_{1}-\Delta v_{1z},z_{1}\right],X_{2}\to\left[x_{2}-\Delta
v_{2x},x_{2}\right],Y_{2}\to\left[y_{2}-\Delta v_{2y},y_{2}\right],Z_{2}\to\left[z_{2}-\Delta
v_{2z},z_{2}\right],X_{3}\to\left[x_{3}-\Delta v_{3x},x_{3}\right],Y_{3}\to\left[y_{3}-\Delta
v_{3y},y_{3}\right],Z_{3}\to\left[z_{3}-\Delta
v_{3z},z_{3}\right],V_{1}\to\left[v_{1x},v_{1y},v_{1z}\right],V_{2}\to\left[v_{2x},v_{2y},v_{2z
}\right],V_{3}\to\left[v_{3x},v_{3y},v_{3z}\right]
\left(\frac{43}{24},0.6\right)
P_{lay}=S\to1-S

| Section 6.3.1: User interface

Finally, the following aspects that are implemented using the following LaTeX code, and can also be found
under the “User Interface” folder in the simulation, are simply used for aesthetic and user-friendliness
purposes (such as the point used to rotate the simulation):

\left(2-\frac{\phi}{2\pi},\frac{k}{2}\right)
\operatorname{polygon}\left(\left(10,10\right),\left(-10,10\right),\left(-10,-10\right),\left(10,-
10\right)\right)
\left[\left(1.125,0\right),\left(2.125,0\right)\right]
\operatorname{polygon}\left(\left(1.125,0.5\right),\left(2.125,0.5\right),\left(2.125,-
0.5\right),\left(1.125,-0.5\right)\right)

| Section 7: Acknowledgements

I would primarily like to acknowledge several YouTube videos that really made the topic of differential
equations clear to me. Especially the following source; myphysicsnotebook (2022). Three body problem
simulation on Desmos. [online] YouTube. Available at: https://www.youtube.com/watch?v=lXzfm55e6e8
which discusses a simulation similar to mine, but in 2 dimensions. This is the video which gave me the idea of
using lists to implement recursive formulae for the positions three bodies, but it must be noted that the final
methodology and implementation is different in my simulation. Similarly, I would like to acknowledge
Desmos online graphing calculator, for making this project possible.

| Section 8: Bibliography

 3Blue1Brown (2019). Differential equations, a tourist’s guide | DE1. [online] YouTube. Available at:
https://www.youtube.com/watch?v=p_di4Zn4wz4&t=1395s

 Alfonso Gonzalez - Astrodynamics & SE Podcast (2021). The Two Body Problem (Newton, Kepler) |
Fundamentals of Orbital Mechanics 1. [online] YouTube. Available at:
https://www.youtube.com/watch?v=nJ_f1h49jfM&t=252s

 Cline, D. (2018). 11.11: The Three-Body Problem. Physics LibreTexts. [online] Available at:
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_
Mechanics_(Cline)/11%3A_Conservative_two-body_Central_Forces/11.11%3A_The_Three-
Body_Problem

 Encyclopedia Britannica. (n.d.). Three-body problem | physics. [online] Available at:
https://www.britannica.com/science/three-body-problem

 Khan Academy (2022). What is kinetic energy? [online] Khan Academy. Available at:
https://www.khanacademy.org/science/physics/work-and-energy/work-and-energy-tutorial/a/what-
is-kinetic-energy

 Khan Academy. (2018). What is gravitational potential energy? [online] Available at:
https://www.khanacademy.org/science/physics/work-and-energy/work-and-energy-tutorial/a/what-
is-gravitational-potential-energy

 Montgomery, R. (2019). The Three-Body Problem. [online] Scientific American. Available at:
https://www.scientificamerican.com/article/the-three-body-problem/

 myphysicsnotebook (2022). Three body problem simulation on Desmos. [online] YouTube. Available
at: https://www.youtube.com/watch?v=lXzfm55e6e8

 Ross, S. (2022). 3-Body Problem Equations Derived, Part 1: Inertial Frame and Non-
dimensionalization | Topic 2. [online] YouTube. Available at: https://www.youtube.com/watch?v=-
j6Fv_Pb5fk&t=923s

 The Editors of Encyclopaedia Britannica (2021). Newton’s law of gravitation. In: Encyclopædia
Britannica. [online] Available at: https://www.britannica.com/science/Newtons-law-of-gravitation

