

# Prize Winner

# Scientific Inquiry

# Year 5-6

# Chloe Yaan Yuit Yew

# Magill School





Department of Defence







# The Rate of Reaction of Calcium Carbonate Dissolving in Acetic Acid

# **Chloe Yaan Yuit Yew**

Magill School

# Table of Contents

=>HON

| Research Question                             |   |
|-----------------------------------------------|---|
| Background Information                        |   |
| Aim                                           |   |
| Hypotheses                                    |   |
| Variables                                     |   |
| Equipment and Materials                       |   |
| Procedure                                     | 6 |
| Risk Assessment                               | 7 |
| Processing and analysing data and information | 7 |
| Discussion and Evaluation                     |   |
| Conclusion                                    |   |
| References                                    |   |
| 202identino                                   |   |

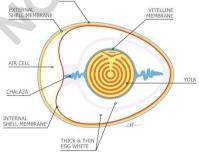
## **Scientific Report**

#### <u>Title</u>

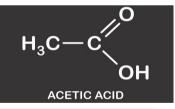
## The Rate of Reaction of Calcium Carbonate Dissolving in Acetic Acid

#### **Research Question**

How fast will the eggshell dissolve in vinegar at three different temperatures and two different concentrations of vinegar?


#### **Background Information**

Vinegar is a sour-tasting liquid produced through the fermentation of ethanol by acetic acid bacteria. Vinegar contains acetic acid of which the chemical formula is CH<sub>3</sub>COOH. Acetic acid has a PH of around 2.5 and a molecular weight of 60g/mole.


An eggshell is a thin, hard outer layer of an egg that is made of calcium carbonate (CaCO3). Although eggshells are considered brittle, they help the egg to prevent bacteria from getting in.

When a raw egg is placed in white vinegar, the eggshell will dissolve. When calcium carbonate reacts with acetic acid, the end products are calcium acetate, water and carbon dioxide gas (Figure 1).

Figure 1. The chemical equation of the acid base reaction



Source: The eggshell: structure, composition and mineralization



 $2 CH_3COOH_{(aqueous)} + CaCO_3 (solid) \Rightarrow Ca(CH_3COO) (solid) + H_2O_{(aqueous)} + CO_2 (gas)$ Acetic acid + Calcium carbonate  $\Rightarrow$  Calcium acetate + Water + Carbon dioxide

#### <u>Aim</u>

This experiment investigates the rate of reaction of calcium carbonate dissolving at three different temperatures, and two different concentrations of the acetic acid. Qualitative and quantitative analysis on the deshelled eggs is conducted to observe the effect of osmosis.

#### **Hypotheses**

It is hypothesised that, the higher the temperature is, the faster the eggshell dissolves in vinegar, and vice-versa. When warmed, the acetic acid molecules obtain more energy, and consequently, the chemical reaction progresses faster. Secondly, the higher the concentration of the vinegar is, the faster the eggshell dissolves in vinegar because more acetic acid molecules react with the calcium carbonate at a given time.

#### **Variables**

#### **Independent Variables**

The temperature and the concentration of the vinegar are the independent variables.

#### **Dependent Variables**

The time taken for the eggshell to dissolve in vinegar is the dependent variable.

#### **Controlled Variables**

Controlled Variables are to ensure that this experiment is a 'fair test' (Table 1).

#### Table 1. Controlled Variables

| Controlled<br>Variables                    | Method of Control | Effects on the Experiment                                               |
|--------------------------------------------|-------------------|-------------------------------------------------------------------------|
| The amount of<br>vinegar for each<br>glass |                   | Different amount of vinegar dissolves the eggshell at a different rate. |

| The size of each<br>glass | All the glasses are identical in size and of the same brand.               | Glasses do not react with vinegar. The glass size is identical to ensure that the liquid level is the same.                                                                                                                                                                                                                        |
|---------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The weight of the eggs    | All the eggs are<br>identical in weight<br>(60g) and of the<br>same brand. | The eggs of the same weight are selected to<br>ensure the total surface area of the eggshell is<br>the same. The increased total surface of the<br>eggshell may increase the rate of reaction.<br>Besides, the thickness of the eggshell should<br>be considered too. The thicker it is, the more<br>time is required to dissolve. |

#### **Uncontrolled Variables**

The temperature which is not controlled and varies daily may affect the time taken for the eggshell to dissolve. However, there is no intention to conduct this experiment at a fixed temperature, and therefore there is a varied range of temperatures for which the eggshells to be placed.

### **Equipment and Materials**

1. 6 raw eggs of the same weight (60g)



- 2. White vinegar (4% and 8% concentration of acetic acid)
- 3. 6 glasses of the same size





4. Thermometer

- 5. Digital scale
- 6. Fridge
- 7. Slow cooker (warm setting)



### **Procedure**

1. Make sure each glass is dry and rinse each glass with vinegar to prevent dilution



2. Fill each glass with 180g white vinegar.



- 3. Place 6 raw eggs in each glass carefully.
- 4. Label each glass appropriately (Table 2).
- 5. Place the six glasses with the eggs at three different temperature settings
- 6. Record the temperature using a thermometer.

Table 2. The eggshells are labelled.

| Label | Temperature                          | Concentration of Vinegar |
|-------|--------------------------------------|--------------------------|
| A     | room temperature (8 °C - 17 °C)      | 4%                       |
| В     | room temperature (8 °C - 17 °C)      | 8%                       |
| c C   | low temperature (2.3 °C - 3.5 °C)    | 4%                       |
| D     | low temperature (2.3 °C - 3.5 °C)    | 8%                       |
| E     | high temperature (50.9 °C - 72.3 °C) | 4%                       |
| F     | high temperature (50.9 °C - 72.3 °C) | 8%                       |

#### **Risk Assessment**

#### **Safety Precautions**

During the experiment, chemical contacts were avoided by putting on an apron, gloves, and safety goggles. All equipment including the digital scale was kept dry and clean. The digital scale and thermometer were examined for any damage before and after use. The glasses were taken to the three different settings with care to prevent spilling. Any spilled substances were cleaned and removed instantly. The slow cooker was inspected for electrical safety to reduce the risk of electrical hazards. Hands were dried before turning on the switch to prevent electrical shocks. Furthermore, the glasses were carefully placed in the slow cooker to prevent scalds from hot water.

#### **Environmental Consideration**

There are no significant environmental considerations as the equipment and actions used in this experiment presented no hazard or danger to the environment.

#### **Ethical Consideration**

The unfertilised eggs used in this experiment are considered non-living things. There was no other living organism used in this experiment. As the eggs and the vinegar are also considered food, they are wasted for this experiment.

#### Processing and analysing data and information

#### **Data Observation**

The acid-base reaction between the acetic acid and the calcium carbonate which produces calcium acetate, water, carbon dioxide gas was observed (Figure 2, Table 3).

#### Photos of eggshells A to F under experiment





Figure 2. The photos of eggshells A to F under observation

### Room Temperature

# Table 3.1. Data observation at room temperature

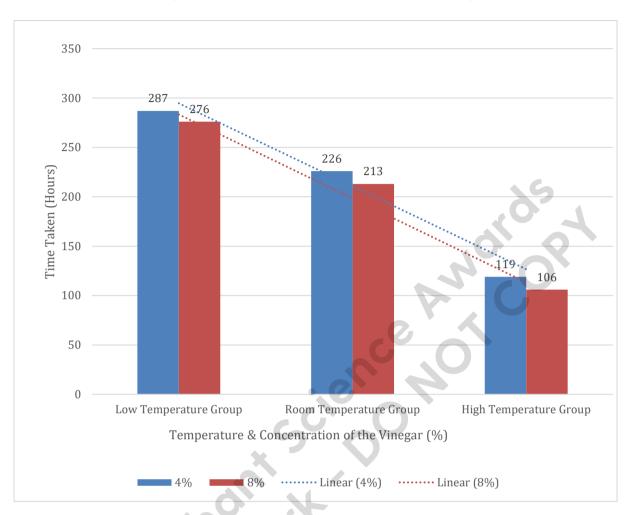
| Duration                                  | Temperature | A                                                                            | В                                                                                                           |
|-------------------------------------------|-------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Immediate<br>reaction,<br>0 to 15<br>mins | 14 °C       | bubbling, fizzing and                                                        | Eggshell B has a faster and<br>stronger reaction. It bubbles<br>more indicating more CO2<br>being released. |
| 15 míns                                   | 14 °C       | Bubbling continues and<br>starts to produce white foam<br>(calcium acetate). | 55                                                                                                          |
| 1 hr 30<br>míns                           | 13 °C       | Its brownísh cutícle starts to<br>peel off.                                  | Lots of its cuticle is peeling off.                                                                         |

| зhrs             | 12 °C         | Lots of white foam (calcium<br>acetate).    | Lots of white foam (calcium<br>acetate).                                             |
|------------------|---------------|---------------------------------------------|--------------------------------------------------------------------------------------|
| 4 hrs 30<br>míns | 11 °C         | More cutícle floats upon the<br>surface     | A layer of cuticle<br>floats up on the<br>surface.                                   |
| 23 hrs           | 12 ° <b>C</b> | More white foam is seen.                    | More white foam is seen.                                                             |
| 1 day 2 hr       | 13 °C         | More white foam is seen.                    | More white foam is seen.                                                             |
| 1 day 4<br>hrs   | 12 °C         | More white foam is seen.                    | More white foam is seen.                                                             |
| 1 day 8<br>hrs   | ₿ °C          | Less foamy.                                 | Less foamy.                                                                          |
| 2 days           | 16 °C         | Less foamy.                                 | Less foamy.                                                                          |
| 2 days 1<br>hr   | 17 °C         | Less foamy.                                 | Less foamy.                                                                          |
| 2 days 5<br>hrs  | 13 °C         | A líttle of íts eggshell has<br>díssolved.  | A fifth of its eggshell has<br>dissolved.                                            |
| 2 days 6<br>hrs  | 13 °C         | Saw a líttle of the yolk.                   | Saw some parts of the yolk.                                                          |
| 2 days 9<br>hrs  | 13 °C         |                                             | White cracks appear on the<br>remaining eggshell and the<br>golden yolk is seen.     |
| з days 5<br>hrs  | 15 °C         | More white<br>crack lines<br>have appeared. | Half of the eggshell has<br>díssolved, and more parts of<br>the golden yolk ís seen. |
| з days 23<br>hrs | 13 °C         | Increased white crack lines<br>are seen.    | Fíve eíghths of the eggshell<br>have díssolved.                                      |
| 6 days з<br>hrs  | -             | Increased white crack lines<br>are seen.    | Three fourths of the eggshell<br>have díssolved.                                     |
| 8 days 21<br>hrs | -             | Increased white crack lines<br>are seen.    | Fully díssolved.                                                                     |
| 9 days 10<br>hrs | -             | Fully<br>díssolved.                         | -                                                                                    |

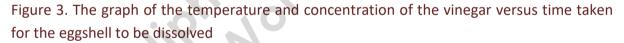
#### Low Temperature

### Table 3.2. Data observation at low temperature

| Duration        | Temperature    | С                                                               | D                                                                                                       |
|-----------------|----------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 0-10<br>míns    | -              | Bubbling / effervescing.                                        | Lots of bubbles.                                                                                        |
| 10 míns         | з.з ° <b>С</b> | Slowly bubbling.                                                | Slowly bubbling.                                                                                        |
| 1 hr            | -              | The egg stays vertical.                                         | The egg has turned to<br>horízontal.                                                                    |
| 11 hrs          | 2.8 °C         | Calcíum acetate (whíte<br>foam) appears.                        | D has more calcium acetate<br>(white foam) than C.                                                      |
| 13 hrs          | -              | More bubbles surround the egg.                                  | More bubbles surround the egg.                                                                          |
| 17 hrs          | 2.3 °C         |                                                                 | Eggshell D's cuticle comes off<br>and floats on the surface. D<br>has more white foam floats<br>than C. |
| 20 hrs          | -              | Effervescing.                                                   | Effervescing                                                                                            |
| 22 hrs          | 3.3 °C         | C has more cuticles coming<br>off the egg and floats than<br>D. | More parts of the cuticle come<br>off the eggshell and floats on<br>the surface.                        |
| 24 hrs          | з.4 °С         | · · ·                                                           | More parts of the cuticle come<br>off the eggshell and floats on<br>the surface.                        |
| 1 day 14<br>hrs | 2.3 °C         | C has more cuticles and foam floating up than D.                | Increased peeling of the cuticle<br>is observed.                                                        |
| 1 day 17<br>hrs | 2.8 °C         | ғоату.                                                          | Foamy.                                                                                                  |
| 1 day 20<br>hrs | з.5°С          | Foamíer.                                                        | Foamíer.                                                                                                |
| зdays           | -              | A bít of yolk ís seen                                           | The whole yolk is seen because<br>the eggshell is very thin.                                            |


| з days 20<br>hrs  | -              | <b>U U U</b>                                 | A fifth of the eggshell has<br>díssolved.                                                |
|-------------------|----------------|----------------------------------------------|------------------------------------------------------------------------------------------|
| 4 days 16<br>hrs  | 2.з °С         | The eggshell ís slowly<br>díssolvíng.        | A fourth of the eggshell has<br>díssolved. Eggshell D díssolves<br>more than Eggshell C. |
| 6 days 18<br>hrs  | 2.7 ° <b>C</b> | A líttle bít more eggshell<br>has díssolved. | Bíg patches of eggshell have<br>díssolved.                                               |
| 11 days<br>12 hrs | з.4 °С         | Nearly díssolved.                            | Fully díssolved.                                                                         |
| 11 days<br>23 hrs | 2.8 °C         | Fully dissolved.                             | Jeritals 60g                                                                             |

# High Temperature


# Table 3.3. Data observation at high temperature

| Duration        | Temperature    | E                                                                    | F                                                                               |
|-----------------|----------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 0 – 10<br>míns  |                | Effervescence takes place.                                           | Effervescence takes place in F<br>earlier and faster than in E.                 |
| 10 míns         | 58.6 °C        | More bubbling and foam of<br>calcium acetate are<br>produced.        | · · · · · ·                                                                     |
| 1 hr 30<br>míns | 61 °C          | More foam is seen. Parts of<br>its cuticle floats on the<br>surface. | Lots of foam is observed. Some<br>parts of its cuticle float on the<br>surface. |
| зhrs            | 69.5° <b>C</b> | Foam has increased.                                                  | Foam has increased.                                                             |
| 4 hrs           | 58.з °С        | <del>Г</del> оату.                                                   | Foamy.                                                                          |

| 9 hrs            | 54.1 °C         | The slow cooker stinks with<br>the strong smell of vinegar.                                                         | The slow cooker stinks with the<br>strong smell of vinegar,<br>indicating that some of the<br>vinegar vapourise. |
|------------------|-----------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 10 hrs           | 53.7 ° <b>C</b> | The eggshell shows<br>írregular crack línes.                                                                        | The eggshell shows írregular<br>cracklínes.                                                                      |
| 23 hrs           | 70.3 °C         | Its vinegar solution has decreased due to evaporation. Less foamy.                                                  | -                                                                                                                |
| 1 day 8<br>hrs   | 50.9 °C         | White deposits of calcium<br>acetate adhere to the inside<br>glass. More vinegar has<br>evaporated, and less foamy. | acetate adhere to the inside<br>glass. More vinegar has                                                          |
| 1 day 10<br>hrs  | 68.5 ° <b>C</b> | The cooked egg is visible<br>because the eggshell<br>becomes thinner.                                               |                                                                                                                  |
| 2 days           | 71.6 °C         | Vínegar level has decreased.<br>Less foamy.                                                                         | Vinegar level has decreased.<br>Less foamy.                                                                      |
| 2 days 1<br>hr   | 56.7 ° <b>C</b> | More white deposits of calcium acetate adhering to the inner glass.                                                 |                                                                                                                  |
| 2 days 8<br>hrs  | - 0             | Some white crack lines appeare on the egg.                                                                          | F has more white crack lines on<br>the egg than E had.                                                           |
| з days 4<br>hrs  | 0               | E has less eggshell<br>díssolved than F.                                                                            | Two thirds of the eggshell have dissolved.                                                                       |
| з days 23<br>hrs |                 | More of the eggshell<br>díssolved.                                                                                  | More of the eggshell dissolved.                                                                                  |
| 4 days           |                 | Vinegar level has decreased<br>below the egg. Three fourths<br>of eggshell dissolved.                               | Vinegar level has decreased<br>below the egg. Four fifths of<br>eggshell dissolved.                              |
| 4 days 10<br>hrs | -               | Nearly díssolved.                                                                                                   | Fully díssolved.                                                                                                 |
| 4 days 23<br>hrs | -               | Fully Díssolved.                                                                                                    | -                                                                                                                |







#### The order of the rate of reaction

The rate of reaction for the eggshell to be dissolved for different temperature and concentration is compared (Figure 3, Table 4). When eggshell encounters with vinegar, the calcium and carbonate ions are more firmly linked to the acetic acid molecules than they are together. Eggshell F becomes the first to dissolve because its vinegar concentration is higher and placed at high temperature. When vinegar concentration is higher, more acetic acid molecules pull apart the calcium and carbonate ions. At high temperature, molecules receive heat energy, so they are agitated to move faster. In contrast, eggshell C become the slowest to dissolve because it is placed at a low temperature causing the molecules to move slower, and with its lower vinegar concentration, less acetic acid molecules bond with calcium ions at a given time.

| Order | Label | Duration                 |
|-------|-------|--------------------------|
| 1     | F     | 4 days 10 hrs (106 hrs)  |
| 2     | E     | 4 days 23 hrs (119 hrs)  |
| 3     | В     | 8 days 21 hrs (213 hrs)  |
| 4     | А     | 9 days 10 hrs (226 hrs)  |
| 5     | D     | 11 days 12 hrs (276 hrs) |
| 6     | С     | 11 days 23 hrs (287 hrs) |

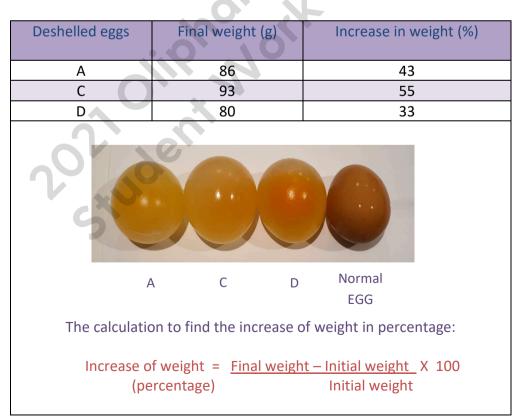
Table 4. The order of the rate of reaction for the eggshell to be dissolved

The result shows that, for the group of 4% concentrated vinegar, eggshell E dissolves faster than eggshell A, followed by eggshell C. Whereas, for the group of 8% concentrated vinegar, eggshell F dissolves faster than eggshell B, followed by eggshell D. This indicates that eggshells dissolve the fastest at high temperature than the room temperature, followed by the low temperature at a given concentration of vinegar (Table 5). This supports the hypothesis that higher temperature increases the chemical reaction.

Maran

| Order of the rate of reaction                                                                             |   |   |  |  |
|-----------------------------------------------------------------------------------------------------------|---|---|--|--|
| 1 (50.9 °C – 72.3 °C)                                                                                     | E | F |  |  |
| 2 (8 °C − 17 °C)                                                                                          | A | В |  |  |
| 3 (2.3 °C – 3.5 °C) C D                                                                                   |   |   |  |  |
| The order of the rate of reaction is affected by<br>High Temperature > Room Temperature > Low temperature |   |   |  |  |

The data also shows that, for the three temperature groups, eggshell B dissolves faster than eggshell A, eggshell D dissolves faster than eggshell C, and eggshell F dissolves faster than eggshell E. (Table 6). This implies that more concentrated acetic acid (8%) dissolves an eggshell faster than less concentrated acetic acid (4%) at a given temperature setting. This supports the hypothesis that higher concentration increases the chemical reaction.


Table 6. The rate of reaction is compared at two concentrations of acetic acid.

| Order of the rate of reaction                                                                  | <b>Room Temperature</b><br>(8 °C - 17 °C) | <b>Low Temperature</b><br>(2.3 °C - 3.5 °C) | <b>High Temperature</b><br>(50.9 °C – 72.3 °C) |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|------------------------------------------------|--|
| 1                                                                                              | В                                         | D                                           | F                                              |  |
| 2                                                                                              | А                                         | С                                           | E                                              |  |
| The order of the rate of reaction is affected by<br>Higher Concentration > Lower Concentration |                                           |                                             |                                                |  |

Overall, eggshells F and E dissolves faster than eggshells B and A, followed by eggshell D and C. This happens because the three temperature settings used in this experiment have a large difference while the two different concentrations of vinegar have a little difference.

#### Comparing the deshelled eggs

The naked eggs are soft and bouncy, and have a strong smell of vinegar. They are generally swollen, larger and heavier than their initial size due to osmosis. The deshelled eggs A, C and D are 33 to 55% heavier than their initial weight (Table 7, Figure 4).



#### Table 7. The weight change of the naked eggs

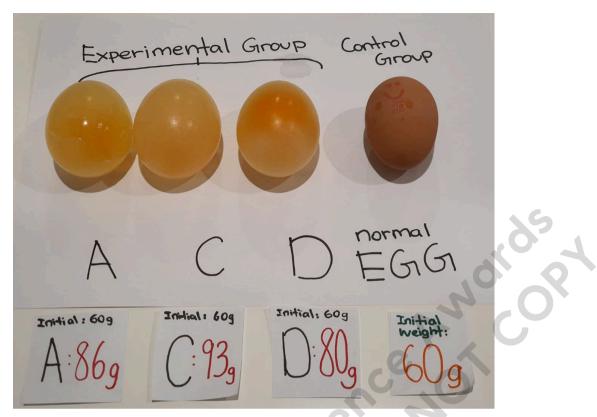



Figure 4.1. The deshelled eggs A, C and D



Figure 4.2. The deshelled eggs B with its egg yolk, egg white, cuticle and shell membrane



Figure 4.3. The deshelled eggs E and F which are cooked

While being placed at room temperature, the naked eggs are shrinking slowly. Three days later, they are smaller and 7.5 to 16% lighter than their initial weight due to osmosis (Table 8, Figure 5).

| Deshelled eggs | Initial weight | Decrease in weight | Weight change (%) |
|----------------|----------------|--------------------|-------------------|
|                | (g)            | (g)                |                   |
| А              | 86             | 72                 | -16               |
| С              | 93             | 79                 | -15               |
| D              | 80             | 74                 | -7.5              |
| Before         | A C            | D Normal Egg       | or or or          |
| Äfter          |                |                    |                   |

Table 8. The weight change of the naked eggs 3 days after being placed at room temperature.

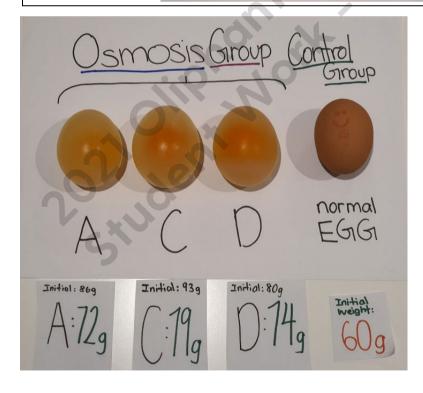



Figure 5. The weight of the naked eggs has reduced 3 days after being placed at room temperature.

#### **Discussion and Evaluation**

#### Usefulness of this experiment and extension of knowledge

Tooth enamel, the outer layer of the teeth which is made of calcium phosphate, may dissolve in acid. When the tooth encounters with acid, calcium and phosphate ions are pulled apart to bind with acetic acid molecules to form calcium acetate. If the PH of the solution in the mouth is very low which means very acidic, the teeth can dissolve to form cavity. Alike to the egg in vinegar, the higher the concentration is, the faster and the more amount the tooth dissolve. Sugar from soda or soft drinks interacts with the bacteria to produce acid which may damage our teeth. It is reported that drinking excessive soft drinks can lead to erosion, cavity and tooth decay. However, our teeth will not dissolve when consuming acidic liquid because saliva contains sodium bicarbonate which neutralises the acids and prevents our teeth from dissolving. It is noteworthy to be aware of the damaging effects of acidic food or drink to the tooth enamel when there is saliva deficiency.

Chicken bones are made of calcium carbonate and collagen. When chicken bone is placed in vinegar, the acetic acid can dissolve the calcium carbonate, leaving the collagen to be bendy. However, food and drinks containing acid do not dissolve human bones. It is important to ensure nourishments containing sufficient calcium such as milk, dairy products and so on, are consumed frequently to build and maintain our bones to be strong and healthy as calcium is not produced in our body; it is all rely on our dietary intake.

When something happens to our cells such as injuries, inflammation, disease, our cells can be swollen like the naked eggs in this experiment. Similar to shell membrane, cell membrane is semipermeable. Osmosis is the process of water molecules passing through the semipermeable membrane by diffusion from one side of higher concentration to the other side of lower concentration. This experiment shows how osmosis takes place through semipermeable membrane to make the naked eggs swell or shrink. Therefore, maintaining dynamic equilibrium for the cell environment is vital to keep us healthy.

Calcium acetate is used as a medication to control the blood level of phosphate for patients who have severe kidney disease. It is usually consumed with food in the form of capsule, tablet and solution. It is essential to take the correct dosage according to doctor's prescription. Some common side effects of calcium acetate include nausea, vomiting, stomach upset and so on.

A little tip can save a lot of time when preparing boiled eggs! Vinegar can soften the eggshells. Therefore, a bit of vinegar can be added in the pot of boiling water with eggs so that it is easier to peel off the eggshells. Another example of the eggs undergoing osmosis is the soyflavoured iron egg which is a popular snack in Taiwan.

#### **Control trial**

As only acid can dissolve eggshells, so control trial was not done in this experiment.

#### **Random Error**

Opening the slow cooker's glass lid makes the vinegar evaporates faster and therefore the vinegar level drops.

#### Systematic Error

Systematic error is minimised if all equipment is functioning with accurate reading.

#### Limitations

A limitation in this experiment is that the decreased vinegar level of eggshells E and F may cause the eggshell to dissolve at a slower rate.

#### Improvement

The future experiment can be improved by utilising apparatus with a thermostat that keeps a preset temperature constant and using a higher concentration of acetic acid may give a more significant result.

#### **Conclusion**

The experiment supports the hypotheses that eggshell dissolves faster in vinegar at higher temperature than lower temperature, and eggshell dissolves faster in more concentrated vinegar than less concentrated vinegar. Such chemical reactions are influenced by the concentration of the acid and base as well as the ambient temperature. Without shells, the naked eggs are able to maintain their shape because of the shell membrane. The deshelled eggs experience a change in size and weight due to the effect of osmosis through semipermeable membrane.

#### **References**

 Calcium, Nutrition, and Bone Health - Ortholnfo - AAOS (2021). Available at: https://orthoinfo.aaos.org/en/staying-healthy/calcium-nutrition-and-bone-health/ (Accessed: July 2021).

- Naked Egg Experiment Science Projects (2021). Available at: https://www.scienceofcooking.com/eggs/naked-egg-experiment.html (Accessed: July 2021).
- 3. Naked Eggs | Science Experiment (2021). Available at: https://www.stevespanglerscience.com/lab/experiments/naked-egg-experiment/ (Accessed: July 2021).
- 4. PH of Vinegar: Acidity and Strength (2021). Available at: https://www.healthline.com/health/ph-of-vinegar (Accessed: July 2021).
- Science Experiment: Acids Bouncing Egg | Indianapolis Public Library (2021). Available at: https://www.indypl.org/blog/for-kids/science-experiment-acids-bouncing-egg (Accessed: July 2021).
- Science Projects: Making Eggs That Bounce (2021). Available at: https://www.factmonster.com/cig/science-fair-projects/making-eggs-bounce (Accessed: July 2021).
- 7. The eggshell: structure, composition and mineralization (2021). Available at: https://www.researchgate.net/publication/51895246
- 8. UCSB Science Line (2021). Available at: http://scienceline.ucsb.edu/getkey.php?key=1413 (Accessed: July 2021).
- 9. What Is Vinegar and How Is It Made? (2021). Available at: https://www.thespruceeats.com/what-is-vinegar-1328647 (Accessed: July 2021).
- 10. What Does Soda Do to Your Teeth? (2021). Available at: https://www.healthline.com/health/dental-oral-health/what-does-soda-do-to-your-teeth (Accessed: July 2021).
- 11. Skeleton Projects, Bone Experiments | Elementary Skeletal Science (2017). Available at: https://learning-center.homesciencetools.com/article/skeletons-and-bones-science-projects/ (Accessed: July 2021).
- 12. Doe.virginia.gov. Available at: https://www.doe.virginia.gov/testing/sol/standards\_docs/science/2010/lesson\_plans/gr wade1/matter/sess\_1-3c.pdf (Accessed: July 2021).

## **Science Journal**

Chloe Yaan Yuit Yew

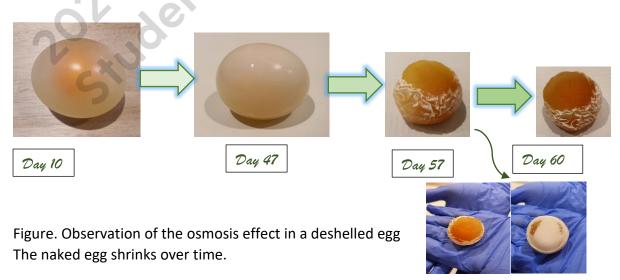
#### Notes and Research

#### <u>Title</u>

The Rate of Reaction of the Calcium Carbonate Dissolving in Acetic Acid

#### **Research Question**

How fast will the eggshell dissolve in vinegar at three different temperatures and at two different concentrations of vinegar?


#### 10|3|2021 - 10|5|2021

- Working on a pilot study
- To observe the chemical reaction between an egg and vinegar solution
- Learning topic:
  - ➢ Acid and base
  - 🕨 Diffusion, osmosis

Obervation of the pilot study:



Figure. Observation of the acid base reaction



#### 10|5|2021 - 7|7|2021

- Doing research online
- Going to library to look for available sources
- Discussion with Science teachers
- Brainstorming ideas with my brothers and mum
- Learn the structure of a scientific report
- To decide the focus of investigation and narrow down the topic

#### 27|6|2021 - 7|7|2021

#### Preliminary Study:

#### What is vinegar?

- Sour-tasting liquid produced through the fermentation of ethanol by acetic acid bacteria using wine, cider, or beer.
- Contains acetic acid, the chemical formula is CH<sub>3</sub>COOH. PH = 2.5, molecular weight = 60g/mole.
- Health benefits: antimicrobial properties, fighting diabetes, improving dandruff, controlling blood sugar, and reducing belly fat and cholesterol.
- Used as cleaning agent and stain removal.
- Used as a dressing or a substitute for other ingredients.
- Outdoor uses: killing weeds, improving soil, detailing cars, and repelling mosquitos.
- A variety of vinegar: apple cider vinegar, white vinegar, balsamic vinegar, white wine vinegar, red wine vinegar, rice vinegar and malt vinegar.

#### References:

- 1. https://www.healthline.com/nutrition/white-vinegar#health-benefits
- 2. https://www.thespruce.com/uses-for-vinegar-3866168
- 3. https://www.webstaurantstore.com/article/373/types-of-vinegar.html

#### What is eggshell?

- A hard outer layer of an egg. What is its structure? What holds the egg shape when it is deshelled?
- Made of calcium carbonate (CaCO3)
- Brittle, prevent bacteria from getting in.

#### References:

The eggshell: structure, composition and mineralization (2021). Available at: https://www.researchgate.net/publication/51895246

What is acid base reaction?

- When a raw egg is placed in white vinegar, the eggshell will dissolve. Why?
- When calcium carbonate reacts with acetic acid, the end products are calcium acetate, water and carbon dioxide gas. Why?
- Chemical equation:

2 CH<sub>3</sub>COOH (aqueous) + CaCO<sub>3</sub> (solid)  $\Rightarrow$  Ca (CH<sub>3</sub>COO)<sub>2</sub> (solid) + H<sub>2</sub>O (aqueous) + CO<sub>2</sub> (gas)

Acetic acid + Calcium carbonate ⇒ Calcium acetate + Water + Carbon dioxide

#### References:

- 1. https://www.indypl.org/blog/for-kids/science-experiment-acids-bouncing-egg
- 2. https://www.factmonster.com/cig/science-fair-projects/making-eggs-bounce
- 3. https://www.stevespanglerscience.com/lab/experiments/naked-egg-experiment/
- 4. https://www.scienceofcooking.com/eggs/naked-eggexperiment.html

#### <u>Aim</u>

To investigates the rate of reaction of an eggshell dissolving at three different temperatures (room temperature, low temperature, and high temperature), and at two different concentrations of the acetic acid (4% and 8%)

- What factors affect how fast eggshell will be dissolved?
- What will I learn from this experiment?
- What will this experiment be extended to other similar situation such as when bone or teeth encountering acids?
- What happens to the deshelled eggs?

#### **Hypothesis**

- 1. The higher the temperature is, the faster the eggshell dissolves in vinegar
- 2. The higher the concentration of the vinegar is, the faster the eggshell dissolves in vinegar

#### Reference:

https://www.doe.virginia.gov/testing/sol/standards\_docs/science/2010/lesson\_plans/ grade1/matter/sess\_1-3c.pdf

#### **Variables**

#### **Independent Variables**

• The temperature and the concentration of the vinegar

#### **Dependent Variables**

The time taken for the eggshell to dissolve in vinegar ٠

#### **Controlled Variables**

Controlled Variables are to ensure that this experiment is a 'fair test' (Table).

#### Table. Controlled Variables

| Controlled<br>Variables              | Method of Control                                                                  | Effects on the Experiment                                                                                                                                                                                                                                  |
|--------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The amount of vinegar for each glass | <ul> <li>Same weight =<br/>180g</li> <li>Weighed by a<br/>digital scale</li> </ul> | • Different amount of vinegar dissolves the eggshell at a different rate.                                                                                                                                                                                  |
| The size of each<br>glass            | <ul><li>Identical size</li><li>Same brand</li></ul>                                | <ul> <li>Glasses are inert to vinegar.</li> <li>Identical size to ensure that the liquid level is the same.</li> </ul>                                                                                                                                     |
| The weight of the eggs               | <ul> <li>Same weight =<br/>60g</li> <li>Weighed by a<br/>digital scale</li> </ul>  | <ul> <li>Same weight to ensure the total surface<br/>area of the eggshell is the same.</li> <li>Increased total surface of the eggshell<br/>may increase the rate of reaction.</li> <li>The thickness of the eggshell should be<br/>considered.</li> </ul> |

#### **Uncontrolled Variables**

- Now is winter, the room temperature is low, expected slower rate of reaction than in summer.
- The room temperature is not controlled and varies daily: affect the time taken for the eggshell to dissolve.
- No intention to conduct this experiment at a fixed temperature, and therefore expected a varied range of temperature.

7|7|2021 - 19|7|2021 Conducting experiment

#### **Equipment and Materials**

1. 6 raw eggs of the same weight (60g)



- 2. White vinegar
  - What is the concentration of vinegar available in the market?

4% and 8% concentration of acetic acid

3. 6 glasses of the same size



- 4. Thermometer (Range of temperature -50°C 300 °C)
- 5. Digital scale
- 6. Fridge
- 7. Slow cooker (warm setting)



#### Procedure:

1. Make sure each glass is dry and rinse each glass with vinegar to prevent dilution.



2. Fill each glass with 180g white vinegar.



- 3. Place 6 raw eggs in each glass carefully.
- 4. Label each glass appropriately. (Table)
- 5. Place the six glasses with the eggs at three different (room temperature settings temperature, low temperature and high temperature).
- 6. Record the temperature using thermometer.



Table. The eggshells are labelled.

| Label | Temperature                          | Concentration of Vinegar |
|-------|--------------------------------------|--------------------------|
| A     | room temperature (8 °C - 17 °C)      | 4%                       |
| В     | room temperature (8 °C - 17 °C)      | 8%                       |
| С     | low temperature (2.3 °C - 3.5 °C)    | 4%                       |
| D     | low temperature (2.3 °C - 3.5 °C)    | 8%                       |
| E     | high temperature (50.9 °C - 72.3 °C) | 4%                       |
| F     | high temperature (50.9 °C - 72.3 °C) | 8%                       |

#### **Risk Assessment**

- 1. Chemical risks:
  - Chemical contacts were avoided by putting on an apron, gloves, and safety goggles.
  - The glasses were handled with care to prevent spilling.
  - Any spilled substances were cleaned and removed instantly.
- 2. Thermal risks:
  - The glasses were carefully placed in the slow cooker to prevent scalds from hot water.
- 3. Electrical risks:
  - The slow cooker was inspected for electrical safety.
  - Hands were dried before turning on the switch to reduce the risk of electrical hazards.
- 4. Handling risks:
  - All equipment including the digital scale was kept dry and clean.
  - The digital scale and thermometer were examined for any damage.
- 5. Environmental Considerations: any hazard or danger to the environment?
- 6. Ethical Considerations: Are raw eggs considered living things?

#### Reference:

https://www.raising-happy-chickens.com/fertile-chicken-eggs.html

#### Processing and Analysing Data and information

#### **Data Observation**

The key observation for this experiment: The acid-base reaction between the acetic acid and the calcium carbonate which produces calcium acetate, water scarbon dioxide gas was observed. (Table)



Figure. The photos of eggshells A to F under observation

#### Room Temperature

| Time                | Duration                                  | Temperature | A                                                                                  | В                                                                                        |
|---------------------|-------------------------------------------|-------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 8.7.21,<br>1:30 pm  | Immedíate<br>reactíon,<br>O to 15<br>míns | 14 °C       | The reaction starts<br>with bubbling and<br>producing more<br>bubbles.             | Faster and stronger<br>reaction. It bubbles<br>more to release gas.                      |
| 8.7.21,<br>1:45 pm  | 15 míns                                   | 14 °C       | Bubbling<br>continues and<br>white foam<br>(calcium acetate)<br>starts to produce. | Faster reaction in<br>producing bubbles<br>(CO2) and white<br>foam (calcium<br>acetate). |
| 8.7.21,<br>3:00 рт  | 1 hr 30<br>míns                           | 13 °C       | Its cuticle starts to peel off.                                                    | Lots of its cuticle is peeling off.                                                      |
| 8.7.21,<br>4:30 pm  | зhrs                                      | 12°C        | Lots of white foam<br>(calcium acetate).                                           | Lots of white foam<br>(calcium acetate).                                                 |
| 8.7.21,<br>6:00 pm  | 4 hrs 30<br>míns                          | 11 °C       | More cutícle floats<br>up on the surface                                           | A layer of cutícle<br>floats up on the<br>surface.                                       |
| 9.7.21,<br>12:30 pm | 23 hrs                                    | 12°C        | More white foam is<br>seen.                                                        | More whíte foam ís<br>seen.                                                              |
| 9.7.21,<br>3:30 рт  | 1 day 2 hr                                | 13 °C       | More white foam is<br>seen.                                                        | More whíte foam ís<br>seen.                                                              |
| 9.7.21,<br>5 ;30 рт | 1 day 4 hrs                               | 12°C        | More white foam is<br>seen.                                                        | More white foam is<br>seen.                                                              |
| 9.7.21,<br>9:30 pm  | 1 day 8 hrs                               | ₿ °C        | Less foamy.                                                                        | Less foamy.                                                                              |
| 10.7.21,<br>1:30 рт | 2 days                                    | 16 °C       | Less foamy.                                                                        | Less foamy.                                                                              |

Table. Data observation at room temperature

| 10.7.21,<br>2:30 рт  | 2 days 1 hr      | 17 °C | Less foamy.                                                                                                    | Less foamy.                                                                             |
|----------------------|------------------|-------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 10.7.21,<br>6:30 pm  | 2 days 5<br>hrs  | 13 °C | A líttle of íts<br>eggshell has<br>díssolved.                                                                  | A fifth of íts eggshell<br>has díssolved.                                               |
| 10.7.21,<br>7:30 рт  | 2 days 6<br>hrs  | 13 °C | Saw a líttle of the<br>Yolk.                                                                                   | Saw some parts of<br>the yolk.                                                          |
| 10.7.21,<br>10:30 рт | 2 days 9<br>hrs  | 13 °C | Unobvious crack<br>lines appear on the<br>remaining<br>eggshell and some<br>parts of the<br>eggshell dissolve. | White cracks appear<br>on the remaining<br>eggshell and the<br>golden yolk is seen.     |
| 11.7.21,<br>6:30 pm  | з days 5<br>hrs  | 15 °C | More white crack<br>lines have<br>appeared.                                                                    | Half of the eggshell<br>has dissolved, and<br>more parts of the<br>golden yolk is seen. |
| 12.7.21,<br>12:30 pm | 3 days 23<br>hrs | 13 °C | Increased white<br>crack lines are<br>seen.                                                                    | Fíve eighths of the<br>eggshell have<br>díssolved.                                      |
| 14.7.21,<br>4:30 pm  | 6 days 3<br>hrs  | 7     | Increased white<br>crack lines are<br>seen.                                                                    | Three fourths of the<br>eggshell have<br>díssolved.                                     |
| 17.7.21,<br>10:30 am | 8 days 21<br>hrs | _     | Increased white<br>crack lines are<br>seen.                                                                    | Fully díssolved.                                                                        |
| 17.7.21,<br>11:30 pm | 9 days 10<br>hrs | -     | Fully díssolved.                                                                                               | -                                                                                       |

#### Low Temperature

| Time                | Duration   | Temperature    | С                                                                                                                                   | D                                                                                                 |
|---------------------|------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 7.7.21,<br>10:00 pm | 0 -10 míns | -              | Bubbling.                                                                                                                           | Lots of bubbles.                                                                                  |
| 7.7.21,<br>10:10 pm | 10 míns    | з.з ° <b>С</b> | Slowly bubbling.                                                                                                                    | Slowly bubbling.                                                                                  |
| 7.7.21,<br>11:00 pm | 1 hr       | -              | The egg stays<br>vertical.                                                                                                          | The egg has turned to<br>horízontal.                                                              |
| 8.7.21,<br>9:00 am  | 11 hrs     | 2.8 °C         | Calcíum acetate<br>(whíte foam)<br>appears.                                                                                         | D has more calcíum<br>acetate (whíte foam)<br>than C.                                             |
| 8.7.21,<br>11:00 am | 13 hrs     | S.             | More bubbles<br>surround the egg.                                                                                                   | More bubbles<br>surround the egg.                                                                 |
| 8.7.21,<br>3:00 pm  | 17 hrs     | 2.3 °C         | Parts of its cuticle<br>come off the<br>eggshell and floats<br>on the surface.<br>White foam<br>(calcium acetate)<br>has increased. | Its cuticle comes off<br>and floats on the<br>surface. D has more<br>white foam floats<br>than C. |
| 8.7.21,<br>6:00 pm  | 20 hrs     | -              | <del>Eff</del> ervescing.                                                                                                           | <del>Ef</del> fervescing.                                                                         |
| 8.7.21,<br>8:00 pm  | 22 hrs     | з.з °С         | C has more cuticle<br>coming off the egg<br>and floats than D.                                                                      | More parts of the<br>cuticle come off the<br>eggshell and floats<br>on the surface.               |
| 8.7.21,<br>10:00 pm | 24 hrs     | з.4 °С         | More parts of the<br>cuticle come off the<br>eggshell and floats                                                                    | More parts of the<br>cutícle come off the<br>eggshell and floats                                  |

#### Table. Data observation at low temperature

|                                  |                             |               | on the surface.                                        | on the surface.                                                                                |
|----------------------------------|-----------------------------|---------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 9.7.21,<br>12:00 pm              | 1 day 14<br>hrs             | 2.3 °C        | C has more cuticles<br>and foam floating<br>up than D. | Increased peeling of<br>the cuticle.                                                           |
| 9.7.21,<br>3:00 рт               | 1 day 1 <del>7</del><br>hrs | 2.8 °C        | ғоату.                                                 | ғоату.                                                                                         |
| 9.7.21,<br>6:00 pm               | 1 day 20<br>hrs             | 3.5° <b>C</b> | Foamíer.                                               | Foamier.                                                                                       |
| 10.7.21,<br>10:00 рт             | зdays                       | -             | A bit of yolk is<br>seen                               | The whole yolk is<br>seen. The eggshell is<br>very thin.                                       |
| 11.7.21,<br>6:00 рт              | 3 days 20<br>hrs            | -             | Very small patches<br>of eggshell have<br>díssolved.   | A fifth of the<br>eggshell has<br>díssolved.                                                   |
| 12.7.21,<br>2:00 pm              | 4 days 16<br>hrs            | 2.3 °C        | The eggshell ís<br>slowly díssolving.                  | A fourth of the<br>eggshell has<br>díssolved. Eggshell D<br>díssolves more than<br>Eggshell C. |
| 14. <del>7</del> .21,<br>4:00 pm | 6 days 18<br>hrs            | J.            | A líttle bít more<br>eggshell has<br>díssolved.        | Bíg patches of<br>eggshell have<br>díssolved.                                                  |
| 19.7.21,<br>10:00 am             | 11 days 12<br>hrs           | -             | Nearly díssolved.                                      | Fully díssolved.                                                                               |
| 19.7.21,<br>9:00 pm              | 11 days 23<br>hrs           | -             | Fully díssolved.                                       | _                                                                                              |

# High Temperature

| Time                | Duration     | Temperature             | E                                                                       | F                                                                                  |
|---------------------|--------------|-------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 8.7.21,<br>1:30 pm  | 0 – 10 míns  | -                       | Effervescence<br>takes place.                                           | Effervescence takes<br>place in F earlier and<br>faster than in E.                 |
| 8.7.21,<br>1:40 pm  | 10 míns      | 58.6 °C                 | More bubbling and<br>foams of calcium<br>acetate are<br>produced.       | More bubbles and<br>foams are produced<br>ín F than ín E.                          |
| 8.7.21,<br>3:00 pm  | 1 hr 30 míns | 61 °C                   | More foam is seen.<br>Parts of its cuticle<br>floats on the<br>surface. | Lots of foam is<br>observed. Some parts<br>of its cuticle float on<br>the surface. |
| 8.7.21,<br>4:30 pm  | з hrs        | 69.5 ° <b>C</b>         | Foam has<br>íncreased.                                                  | Foam has increased.                                                                |
| 8.7.21,<br>5:30 pm  | 4 hrs        | 58.3 °С                 | ғоату.                                                                  | ғоату.                                                                             |
| 8.7.21,<br>10:30 pm | 9 hrs        | 54.1 °C                 | The slow cooker<br>stinks with the<br>strong smell of<br>vinegar.       | The slow cooker<br>stinks with the<br>strong smell of<br>vinegar.                  |
| 8.7.21,<br>11:30 pm | 10 hrs       | <i>5</i> 3.7 ° <b>C</b> | The eggshell shows<br>írregular crack<br>línes.                         | The eggshell shows<br>írregular crack línes.                                       |
| 9.7.21,<br>12:30 pm | 23 hrs       | <i>7</i> 0.з ° <b>С</b> | Its vínegar<br>solutíon has<br>decreased. Less<br>foamy.                | Its vinegar solution<br>has decreased due to<br>evaporation. Less<br>foamy.        |
| 9.7.21,<br>12:30 pm | 23 hrs       | 50.9 ° <b>C</b>         | White deposits of<br>calcium acetate<br>adhere to the inside            | White deposits of<br>calcium acetate<br>adhere to the inside                       |

# Table. Data observation at high temperature

|                                  |                  |                 | glass. More<br>vinegar has<br>evaporated, and<br>less foamy.                                | glass. More vinegar<br>has evaporated, and<br>less foamy.                              |
|----------------------------------|------------------|-----------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 9.7.21,<br>9:30 рт               | 1 day 8 hrs      | 68.5 ° <b>C</b> | The cooked egg is<br>visible because the<br>eggshell becomes<br>thinner.                    | The cooked egg is<br>visible because the<br>eggshell becomes<br>thinner.               |
| 9.7.21,<br>11:30 pm              | 1 day 10 hrs     | 71.6 °C         | Vínegar level has<br>decreased. Less<br>foamy.                                              | Vinegar level has<br>decreased. Less<br>foamy.                                         |
| 10.7.21,<br>1:30 рт              | 2 days           | 56.7 °C         | More white deposits<br>of calcium acetate<br>adhering to the<br>inner glass.                | F has more white<br>deposits adhering to<br>the inner glass than<br>E.                 |
| 10.7.21,<br>9:30 рт              | 2 days 8 hrs     | s<br>s          | Some white crack<br>lines appeared on<br>the egg.                                           | F has more whíte<br>crack línes on the<br>egg than E had.                              |
| 11.7.21,<br>5:30 pm              | з days 4 hrs     |                 | E has less eggshell<br>díssolved than F.                                                    | Two thírds of the<br>eggshell have<br>díssolved.                                       |
| 12.7.21,<br>12:30 pm             | з days 23<br>hrs | 4               | More of the<br>eggshell díssolved.                                                          | More of the eggshell<br>díssolved.                                                     |
| 12. <del>7</del> .21,<br>1:30 pm | 4 days           | -               | Vinegar level has<br>decreased below the<br>egg. Three fourths<br>of eggshell<br>dissolved. | Vinegar level has<br>decreased below the<br>egg. Four fifths of<br>eggshell dissolved. |
| 12.7.21,<br>11:30 pm             | 4 days 10<br>hrs | -               | Nearly díssolved.                                                                           | Fully díssolved.                                                                       |
| 13.7.21,<br>12:30 pm             | 4 days 23<br>hrs | -               | Fully Díssolved.                                                                            | -                                                                                      |

#### Learning:

- To design a graph of the temperature and concentration of the vinegar versus time taken for the eggshell to be dissolved.
- Showing the results using bar and line graphs
- To detect any differences between temperature and concentration groups

#### **Thinking Process:**

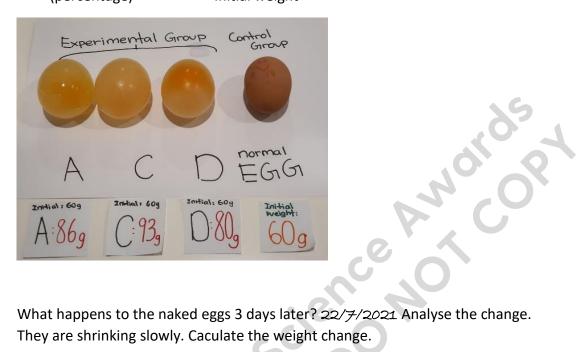
#### The order of the rate of reaction

Questions:

- Compare the rate of reaction for the eggshell to be dissolved for different temperature and concentration. Who is the winner? Who is the slowest? Why?
- Is the result the same as expected? Why?
- To create a table to show the order of the rate of reaction for the eggshell to be dissolved.

Discuss the result findings:

- Compare the rate of reaction for three temperature settings. Why? Create a table.
- Compare the rate of reaction for two concentration settings. Why? Create a table.
- What is the effect with the combination of temperature and concentration?


#### Final work: 19/7/2021

• Washing the naked eggs and weighing them. They are so cute, soft and bouncy!



The naked eggs are swollen and heavier than their initial weights. To find out more! • Causes: Osmosis. Create a table to compare the weight gain.

The increase of weight =  $\underline{Final weight} - \underline{Initial weight} \times 100$ (percentage) Initial weight



What happens to the naked eggs 3 days later? 22/7/2021 Analyse the change. ٠ They are shrinking slowly. Caculate the weight change.



• Observe the naked egg B. Poke it and see what is inside: Liquid egg white and golden egg yolk!



• Observe the naked eggs E and F. They look like salted egg but smell like a vinegar!



#### **Discussion of interesting topics**

Will similar situation happen when teeth encounter with vinegar? Is it good to have acidic drink? The answer is no. What is the consequence? Tooth decay, cavity and erosion.

#### Reference:

https://www.healthline.com/health/dental-oral-health/what-does-soda-do-to-your-teeth

Will similar situation happen when bone encounters with vinegar? Any effect to our human bone?

#### Reference:

- 1. https://orthoinfo.aaos.org/en/staying-healthy/calcium-nutrition-and-bonehealth/
- 2. https://learning-center.homesciencetools.com/article/skeletons-and-bonesscience-projects/

Function of semipermeable membrane: Shell membrane vs cell membrane, effect of osmosis

Cooking boiled eggs with a little bit of vinegar. What is the advantage?

A\* /

#### **Evaluation**

Think: Can I do better than this?

#### Strengths

- Are there any useful applications of this knowledge?
  - 1. Vinegar helps peeling off eggshells with ease, time saving
  - 2. Dental care, soft drinks causing tooth cavity, sugary foods producing acids, saliva deficiency causing tooth erosion

#### Reference:

- 1. http://scienceline.ucsb.edu/getkey.php?key=1413
- https://ethosorthodontics.com.au/blog/is-apple-cider-vinegar-harming-yourteeth/

#### **Random Error**

- What causes inconsistent result?
  - 1. Opening the slow cooker's glass lid makes the vinegar evaporates faster.
  - 2. The liquid level in E and F drops, therefore the whole egg is not covered by vinegar.

#### Systematic Error

- Think about any systematic error in this experiment.
  - 1. Equipment must be functioning properly.
  - 2. Measurements have to be accurate.

#### Limitations

- Any limitation due to the design of this experiment?
- Evaporation causes vinegar level of E and F to decrease.

#### Improvement

- What can I do to eliminate the limitation?
  - 1. Utilising apparatus that have a thermostat which keeps a set temperature constant.
  - 2. Using higher concentration of acetic acid, e.g. 20%, 40% to see any differences.

#### Conclusion:

- Does the experiment support the hypotheses?
- Two factors which affect the rate of reaction: temperature and concentration of vinegar
- Osmosis takes place through the shell membrane.

#### **Reference List:**

- 1. Calcium, Nutrition, and Bone Health Ortholnfo AAOS (2021). Available at: https://orthoinfo.aaos.org/en/staying-healthy/calcium-nutrition-and-bone-health/ (Accessed: July 2021).
- 2. Is Apple Cider Vinegar Harming Your Teeth? (2020). Available at: https://ethosorthodontics.com.au/blog/is-apple-cider-vinegar-harming-your-teeth/ (Accessed: July 2021).
- Naked Egg Experiment Science Projects (2021). Available at: https://www.scienceofcooking.com/eggs/naked-egg-experiment.html (Accessed: July 2021).
- Naked Eggs | Science Experiment (2021). Available at: https://www.stevespanglerscience.com/lab/experiments/naked-egg-experiment/ (Accessed: July 2021).
- 5. PH of Vinegar: Acidity and Strength (2021). Available at: https://www.healthline.com/health/ph-of-vinegar (Accessed: July 2021).
- Resources, F. and Tips, K. (2021) Types of Vinegar , WebstaurantStore. Available at: https://www.webstaurantstore.com/article/373/types-of-vinegar.html (Accessed: July 2021).
- Science Experiment: Acids Bouncing Egg | Indianapolis Public Library (2021). Available at: https://www.indypl.org/blog/for-kids/science-experiment-acids-bouncing-egg (Accessed: July 2021).
- Science Projects: Making Eggs That Bounce (2021). Available at: https://www.factmonster.com/cig/science-fair-projects/making-eggs-bounce (Accessed: July 2021).
- UCSB Science Line (2021). Available at: http://scienceline.ucsb.edu/getkey.php?key=1413 (Accessed: July 2021).
- 10. What Is Vinegar and How Is It Made? (2021). Available at: https://www.thespruceeats.com/what-is-vinegar-1328647 (Accessed: July 2021).
- 11. White Vinegar: Ingredients, Uses and Benefits (2021). Available at: https://www.healthline.com/nutrition/white-vinegar#health-benefits (Accessed: July 2021).
- 12. What Does Soda Do to Your Teeth? (2021). Available at: https://www.healthline.com/health/dental-oral-health/what-does-soda-do-to-your-teeth (Accessed: July 2021).

- 13. Skeleton Projects, Bone Experiments | Elementary Skeletal Science (2017). Available at: https://learning-center.homesciencetools.com/article/skeletons-and-bones-scienceprojects/ (Accessed: July 2021).
- 14. Doe.virginia.gov. Available at: https://www.doe.virginia.gov/testing/sol/standards\_docs/science/2010/lesson\_plans/gr ade1/matter/sess 1-3c.pdf (Accessed: July 2021).

#### Assistance & Acknowledgement

While doing my research on understanding the chemistry behind the acid-base reaction, I also learned difficult scientific terms and how to do a scientific report. I asked questions and discussed my ideas with my family when I faced difficulties. I also improved my computer skills through learning from my brothers and my mum. I asked my parents to supply the materials for the experiment. I also asked my mother to assist me in taking photos for the project. My mother helped me to proofread my writing and report.



The END!

Chloe Yew 23.7.2021

20