

Programming, Apps &

Robotics

Year 7-8

Riley Lorenz

Pedare Christian College

Intro & Background
For my Oliphant Science Awards entry this year, I decided to choose the programming
category. This was because I had entered programs the last few years, and have adequate
skills in multiple programming languages. I decided to choose Python because of its
flexibility and relative simplicity. I decided to create a ‘space calculator’ because they can be
useful learning aids and fun to use. I tried to keep it simpler than my other entries but was
still faced with numerous difficulties. I was unable to complete all categories, but it can
always be expanded in the future. I had to accept that high-standard programs take a long
time and that I would have to complete as much as possible before the deadline.

I find the vastness of space interesting, and I hope that through my project others will
experience the enjoyment that comes with learning science well.

I have been coding for about 4 years, but only used an advanced language in the last 2-2.5
years. I attempted to use the Unity game engine for my last project, but the difficulty was
much higher than I expected. I thought about using Unity this year but decided to choose
python, as it has a large amount of functionality, but is also relatively simple.

“Neptune is 26,470 times farther away than New York.” That is just one example of a fact
you could learn from my Super Space Calculator. Currently, you can calculate how long it will
take to get to different planets (and the Moon/Sun) at different speeds. Because of the
immense distances in space, I had to deal in Km/S instead of Km/h. You can also calculate
the relative distance of locations (Celestial bodies).

My program was written in python, on an Asus Chromebook with a 10th gen Intel Core i5
processor. While the computer is quite high-end, the code itself should run on any computer.
I used a web compiler called Programiz, which allowed me to rapidly test my code without
having to download IDLE.

Limitations
While I was unable to include all celestial bodies, I included all the planets, The Sun and The
Moon. I was unable to create a GUI, but I have designed some examples:

. Because of hardware limitations, I was unable toThe Super Space Calculator GUI.pdf
add everything I wanted. Because I am using an online editor, the internet is prone to
fluctuations and sometimes the program will not run. This is not because of the code, so
please try running the program again. While I noticed it, I didn’t have enough time to fix the
error where when you compare distances if the first is shorter than the second, you get a
zero error.

Aim
The aim of my project this year was as a learning aid for primary school classrooms. The
target age demographic was 10 to 12-year-olds. It allows teachers to relax for a while as
students discover facts about the Solar System. It allows people to learn in a fun and
innovative way. Using comparisons is a great way to visualise data, and I hope this project is
no exception. While this is just a preliminary copy, I believe with a bit of time, my program
could evolve into a fun learning tool, used in classrooms everywhere. With some work,

20
21

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

https://drive.google.com/file/d/1316Kt_-gCwWotHtuOGQHlzxSHYH9eFIP/view?usp=sharing

science could become the favourite subject of many more students. This could be used in
many places as well, kids could use it to learn facts to impress their friends, or to sound
good in class.

Running the Program
First, copy-paste the python code into the text input in either IDLE or
www.programiz.com/python-programming/online-compiler/, hit run, then press either 1, 2, or
3 to select a calculator mode. Hit enter to lock your selection. Any type of computer should
be sufficient to run the program. Then follow the prompts given, before hitting enter again. If
at any time the program stops or doesn’t do anything, you can restart it by clicking run again.

Glossary
GUI - Graphical User Interface, or the buttons and other representations that you interact
with on the screen.

Input - Whatever you type into the computer.

Print - In programming terms, to print something is to show it on the screen.

Variable - A set of information that the computer remembers so that it can be used
elsewhere e.g. A password or username, a web address, an IP address, etc

Note: ## in programming tells the computer to ignore it. Just copy and paste
everything under the heading into the input box

Python Code
##This section tells the program what software libraries it needs to access.
import numpy as np

##This section sets the values of variables.
#Kms -
moonDistance = 384400
sunDistance = 149597870
mercDistance = 77000000
venusDistance = 40000000
marsDistance = 350820000
jupiterDistance = 778000000
saturnDistance = 1400000000
uranusDistance = 2900000000
neptuneDistance = 4500000000

lightSpeed = 300000
carSpeed = 0.016668

NYDistance = 17000
londonDistance = 16200

20
21

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

https://www.programiz.com/python-programming/online-compiler/

#Names
sunNames = ["sun", "the sun", "The Sun", "the Sun", "Sun"]
moonNames = ["moon", "the moon", "The Moon", "the Moon", "Moon"]
mercuryNames = ["Mercury", "mercury"]
venusNames = ["Venus", "venus"]
marsNames = ["Mars", "mars"]
jupiterNames = ["Jupiter", "jupiter", "Jupit", "jupit"]
saturnNames = ["Saturn", "saturn", "Sat", "sat"]
uranusNames = ["Uranus", "uranus", "Uran", "uran"]
neptNames = ["Neptune", "neptune", "Nept", "nept"]

NYNames = ["NY", "ny", "New York", "new york", "New york", "new York"]
londonNames = ["London", "london"]

lghtSpdNames = ["light speed", "Light speed", "Light Speed", "Lightspeed", "lightspeed"]
carSpdNames = ["car speed", "Car speed", "Car Speed"]

##This section collects and processes input from the user
def info():

global place
global speed
global mode
global size

print("What mode would you like to use?")
print("1. Speed Calculator")
print("2. Relative Distance Calculator")
print("3. Relative Diameter Calculator - Unavailable")
mode=input(">")

print("")
print("Celestial Bodies Supported: ")
print("The Sun, Mercury, Venus, The Moon, Mars, Jupiter, Saturn, Uranus, and Neptune.")
print()
print("Locations Supported: ")
print("All celestial bodies, New York, London")

##This section collects extra information from the user, depending on the mode.
if mode == "1":

place=input("What celestial body would you like to go to? ")
speed=input("What speed (km/s)? ")
if speed in lghtSpdNames:

speed = lightSpeed
setPlace(place)

else:
setPlace(place)

20
21

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

if mode == "2":
placeDistance=input("What is one celestial body you want to compare? ")
location2=input("What 'location' do you want to compare it to? ")
setLocation(location2, placeDistance)

##This section calculates the results for section 1 using a simple division sum.
def setPlace(location):

if location in sunNames:
time = round(sunDistance / (int(speed)), 2)
distance = sunDistance

elif location in moonNames:
time = round(moonDistance / (int(speed)), 2)
distance = moonDistance

elif location in mercuryNames:
time = round(mercDistance / (int(speed)), 2)
distance = mercDistance

elif location in venusNames:
time = round(venusDistance / (int(speed)), 2)
distance = venusDistance

elif location in marsNames:
time = round(marsDistance / (int(speed)), 2)
distance = marsDistance

elif location in jupiterNames:
time = round(jupiterDistance / (int(speed)), 2)
distance = jupiterDistance

elif location in saturnNames:
time = round(saturnDistance / (int(speed)), 2)
distance = saturnDistance

elif location in uranusNames:
time = round(uranusDistance / (int(speed)), 2)
distance = uranusDistance

elif location in neptNames:
time = round(neptuneDistance / (int(speed)), 2)
distance = neptuneDistance

else:
print("Location not found. Please restart the program.")
raise SystemExit

##This section prints the information from section 1 to the screen.
if mode == "1":

timeMins = round(time / 60, 2)
timeHours = round(timeMins / 60, 2)
timeDays = round(timeHours / 24, 2)
timeYears = round(timeDays / 365, 2)

#print(time)
#speedHours = speed * 60 * 60, 2

20
21

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

print("At %s km/s it will take %s seconds or %s minutes or %s hours or %s days or
%s years." % (speed, time, timeMins, timeHours, timeDays, timeYears))

##This section changes variables based on user input.
def setLocation(location, placeDistance):

if location in sunNames:
locationDistance = sunDistance
placeDistance2 = sunDistance

elif location in moonNames:
locationDistance = moonDistance
placeDistance2 = moonDistance

elif location in mercuryNames:
locationDistance = mercDistance
placeDistance2 = mercDistance

elif location in venusNames:
locationDistance = venusDistance
placeDistance2 = venusDistance

elif location in marsNames:
locationDistance = marsDistance
placeDistance2 = marsDistance

elif location in jupiterNames:
locationDistance = jupiterDistance
placeDistance2 = jupiterDistance

elif location in saturnNames:
locationDistance = saturnDistance
placeDistance2 = saturnDistance

elif location in uranusNames:
locationDistance = uranusDistance
placeDistance2 = uranusDistance

elif location in neptNames:
locationDistance = neptuneDistance
placeDistance2 = neptuneDistance

elif location in NYNames:
locationDistance = NYDistance
placeDistance2 = NYDistance

elif location in londonNames:
locationDistance = londonDistance
placeDistance2 = londonDistance

else:
print("Location not found. Please restart the program.")
raise SystemExit

if placeDistance in sunNames:
distance = sunDistance

elif placeDistance in moonNames:
distance = moonDistance

20
21

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

elif placeDistance in mercuryNames:
distance = mercDistance

elif placeDistance in venusNames:
distance = venusDistance

elif placeDistance in marsNames:
distance = marsDistance

elif placeDistance in jupiterNames:
distance = jupiterDistance

elif placeDistance in saturnNames:
distance = saturnDistance

elif placeDistance in uranusNames:
distance = uranusDistance

elif placeDistance in neptNames:
distance = neptuneDistance

else:
print("Location not found. Please restart the program.")
raise SystemExit

##This section prints the information from section 2 to the screen.
timesFurther = round(distance / locationDistance)

print("'%s' is %s times further away than '%s'." % (placeDistance, timesFurther,
location))

##This section runs all the code in the correct order.
def gui():

pass

def main():
gui()
info()

main()

##End

BIBLIOGRAPHY
I had minimal external support. My parents helped me brainstorm ideas, and my peer Thomas
helped me to debug my first error - I eventually realised it was due to logic operations. I also went
to the Adelaide Planetarium, which helped inspire me.

2021, Solar System Information Chart, Chart, Adelaide Planetarium, viewed 5 June 2021

Wikipedia n.d., Voyager 2, viewed 15 July 2021, <https://en.wikipedia.org/wiki/Voyager_2>.

20
21

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

https://en.wikipedia.org/wiki/Voyager_2

