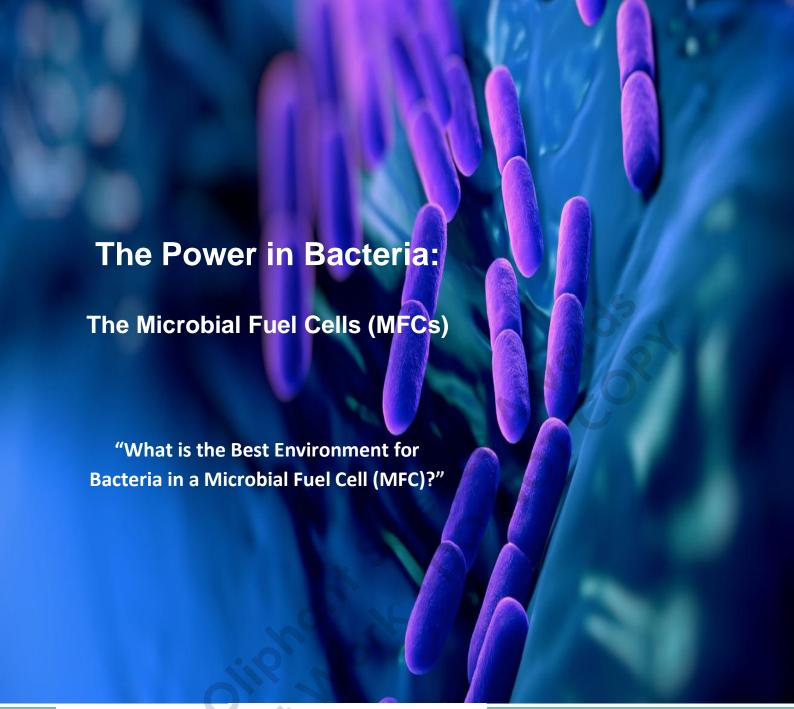


Prize Winner

Scientific Inquiry Year 7-8

Eugene Lee


Pedare Christian College

This Photo by Unknown Author is licensed under CC BY-ND

JULY 2021

Upload Code: XGD3UHQ8

Word Count: 1,985 words.

 $(\mbox{Headings, titles, abstract, figure captions, tables, references}$

and pictures/descriptions are excluded.)

Abstract

The purpose of this study is to understand how bacteria generate electricity and the impacts of various materials and factors on the power generation by Microbial Fuel Cells (MFCs). The aim of the experiments is to identify the comparison between different types of soils used in MFCs and to reflect on any discoveries made. The goal of this research is to provide a general overview of Microbial Fuel Cells and to provide a nes ac science with science with a s detailed methodology to represent procedures accurately.

Research Motivation

Microbes are often associated with disease or illness, but also the essential players in the recycling of nutrients and in providing key ingredients necessary to support life. There are three main types of microbes: bacteria, fungi and viruses; bacteria are the key layers in Microbial Fuel Cells (MFCs) and have dominated since life on Earth began and have been found in every imaginable type of environment, like acid pools, hot thermal vents and deep sea where thought to be uninhabitable.

The sewage generated by human activities has been discharged in large quantities, containing rich organic matter including bacteria and valuable substances, which cannot be recycled into effective energy resources. Instead, additional energy is required in the treatment, resulting in a lot of waste of resources. With the rise of the concept of modern circular economy and the breakthrough of microbial fuel cell (MFC) technology, many scientists began to consider the innovative sewage treatment system of circular economy, which can generate electricity and reduce the toxicity of heavy metals in water and soil.

In this topic, a simple mud-based battery (*Figure 1.*) will be created and explained how bacteria can convert chemical energy into electrical energy. Just as the food we eat contains a lot of energy, so does the waste we produce. If the waste had been dumped into rivers and oceans without removing the energy, the ecosystems may be damaged. For this reason, all the nutrient rich organics in wastewater must be removed, however, the process to remove these organics and treat the wastewater requires a lot of energy. Researchers are currently developing MFC as a method to simultaneously treat wastewater and convert the energy into electricity. If this can be done, it may be possible for wastewater treatment to go from a process that uses a lot of energy to one that could generate energy.

Introduction

What is a Microbial Fuel Cell?

A MFC is a bio-electrochemical system that can drive an electric current by using bacteria and a high-energy oxidant such as O_2 , mimicking bacterial interactions found in nature. The MFCs are the devices which harness electrons given off naturally by bacteria within soil, sediment or wastewater, to create an electrical circuit. The first MFCs, demonstrated in the early 20^{th} century by Michael Cressé Potter (1858-1948), used a mediator: a chemical that transfers electrons from the bacteria in the cell to the anode. In the 21^{st} century MFCs have started to find commercial use in wastewater treatment (*Appendix 1*). The purpose of this study is to understand how bacteria generate electricity and the impacts of various materials and factors on the power (*Appendix 2*).

Figure 1. Single-Chamber MFC (SCMFC)

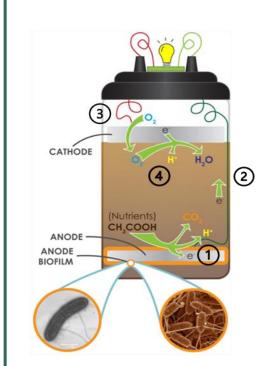


Figure 1. shows the flow of electrons through a single-chamber

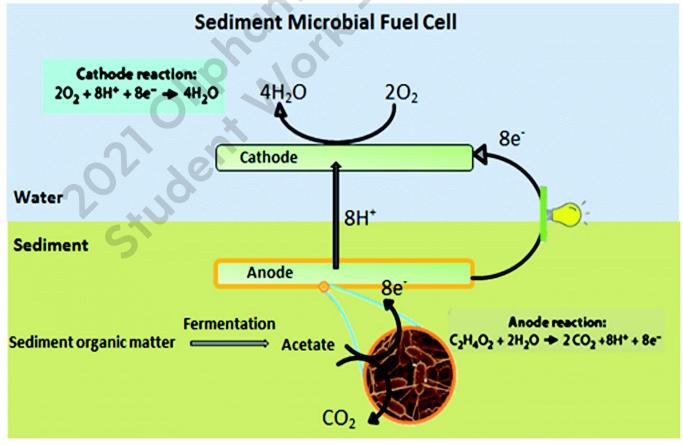
- 1 As the microbes around the anode munch up the nutrients in the mud, they deposit electrons onto the anode.
- 2 These electrons travel through the wire to the Hacker board, where they power the electronics.
- 3 The electrons then travel back down through the wire to the cathode.
- 4 As the cathode, electrons interact with oxygen (from the air) and protons (from the anode) to form water.

 Mechanism of Microbial Fuel Cells

Mechanism of Microbial Fuel Cells

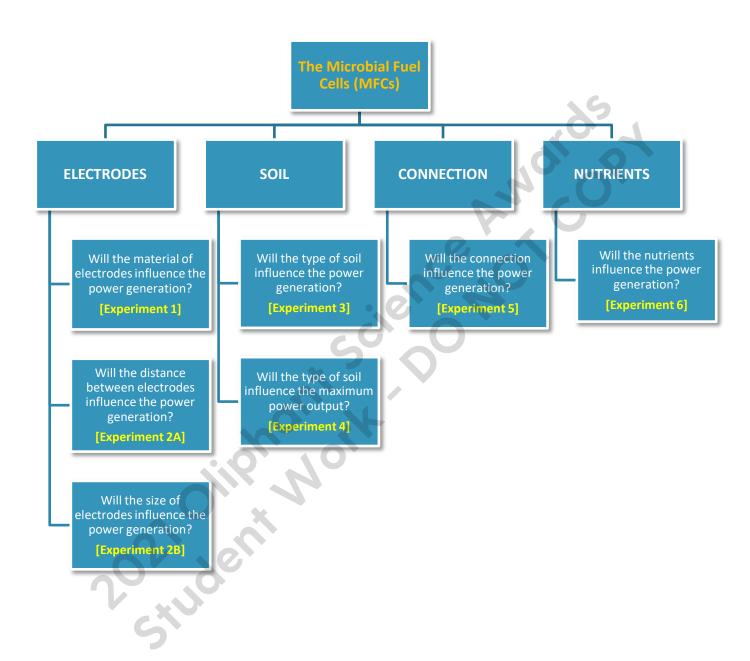
Anode:

Microbes


 $C_6H_{12}O_6 + 6H_2O \rightarrow 6CO_2 + 24H^+ + 24e^-$

Cathode:

 $4H^+ + 4e^- + O_2 \rightarrow 2H_2O$

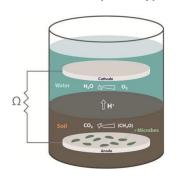

 $C_6H_{12}O_6 + 6H_2O \rightarrow 6CO_2 + 12H_2O$

https://en.wikipedia.org/wiki/Microbial_fuel_cell#/media/File:SoilMFC.pn

 $\underline{\text{https://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2015/RA/c5ra15279h/c5ra15279h-f3 \ \text{hi-res.gif}}$

The Experimental Flow Chart

Materials & Equipment



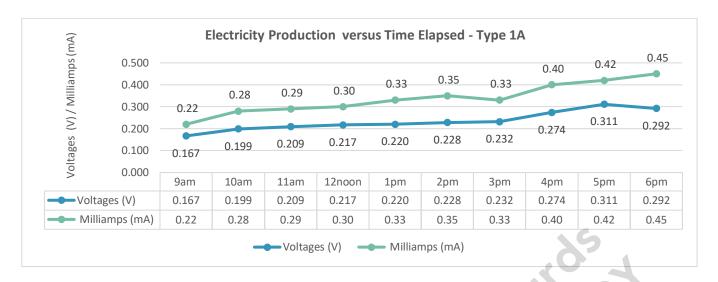
E	quipment	Soil
8 × Plastic Vessels with Lids	6 × Capacitor (10ųF)	Benthic Mud
4 × Carbon Felts	1 × 10mL Glucose Solution	Forest Topsoil
1 × Red Wire for Cathode	6 × LED Light	Backyard Garden Soil
1 × Green Wire for Anode	1 × Cupper Sheets & 1 × Zinc Sheets	
1 × Multimeter	1 × 5g Sugar	
6 × Alligator Clips	1 × 5g Glucose	
6 × Gloves	1 × 5g Fructose	
8 × Resistors		

Method

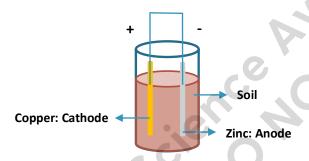
Create a Single-chamber MFC Sample – Type 1A (Graphite Fiber).

Step 1: Build the electrodes

Step 2: Collect soil samples & attach the electrodes.



Step 3: Measure the Voltage and record the data (Result 1A).



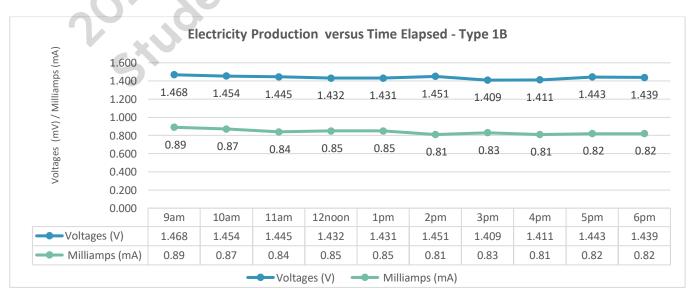
Result 1A (electrodes: Carbon Felt / Graphite Fiber)

Fixed Variable	Independent Variables (Time Elapsed: Hourly) (01/05)									
MFC Same Location, Temperature Multimeter, Alligator Clips, Soil (Garden Soil) (Created at 8am)	9am	10am	11am	12 noon	1pm	1pm	1pm	4pm	5pm	6pm
	J-6									
Dependent Variables	V	V	V	V	V	V	V	V	V	V
Voltages (V)	0.167	0.199	0.209	0.217	0.220	0.228	0.232	0.274	0.311	0.292
	mA	mA	mA	mA	mA	mA	mA	mA	mA	mA
Milliamps (mA)	0.22	0.28	0.29	0.30	0.33	0.35	0.33	0.40	0.42	0.45

Create a Single-chamber MFC Sample - Type 1B (Metal Electrodes).

Step 1: Build the electrodes

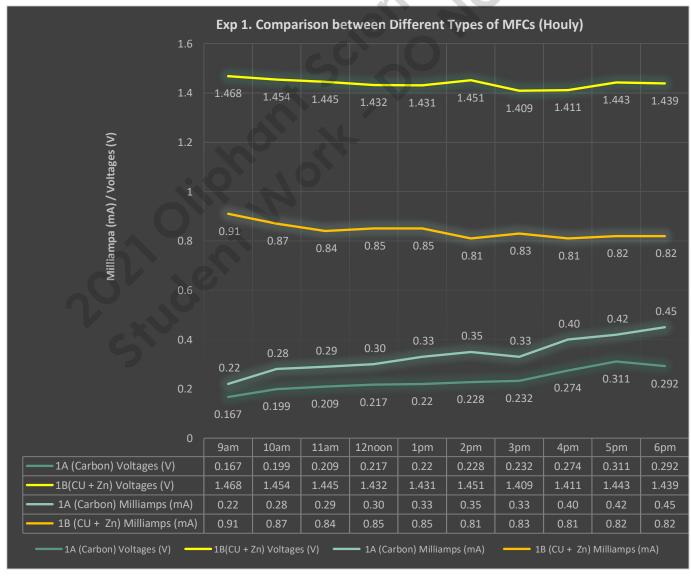
Step 2: Collect soil samples & attach the electrodes.



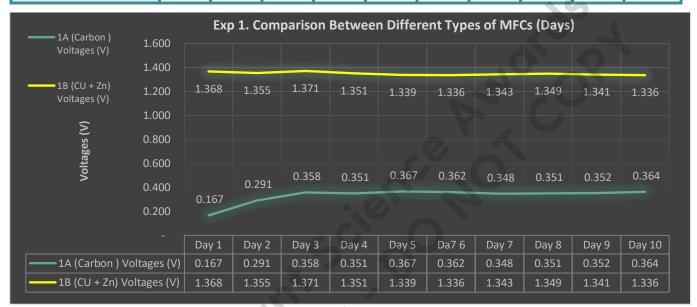
Step 3: Measure the Voltage and record the data.

Result 1B (Electrodes: Cu + An)

Fixed Variable MFC	Independent Variables (Time Elapsed: Hourly) (01/05)									
Same Location, Temperature Multimeter, Alligator Clips,	9am	10am	11am	12 noon	1pm	1pm	1pm	4pm	5pm	6pm
Soil (Garden soil) (Created at 8am)										
Dependent Variables	V	V	V	V	V	V	V	V	V	V
Voltages (V)	1.468	1.454	1.445	1.432	1.431	1.451	1.409	1.411	1.443	1.439
	mA	mA	mA	mA	mA	mA	mA	mA	mA	mA
Milliamps (mA)	0.89	0.87	0.84	0.85	0.85	0.81	0.83	0.81	0.82	0.82



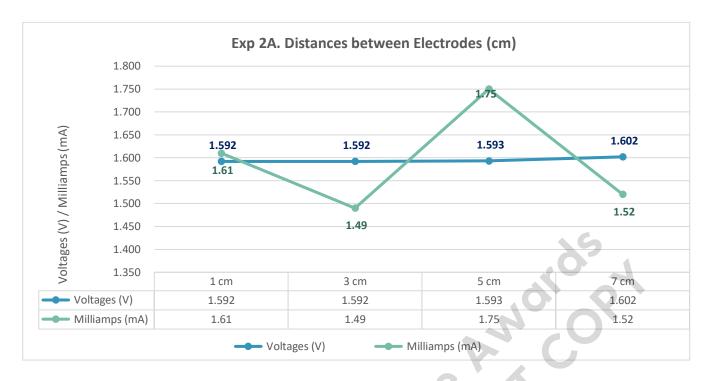
Results of Experiment 1:


Two types of MFCs were created, one is used carbon felt as the electrodes (1A), and another one is used metal electrodes (1B), both are used garden soil as the sediment. From the figures above confirm that the potential can exist with the soil between electrodes. This is to investigate the voltage generated across the terminals, the electrodes were not connected to the pins on the Hacker board. The value of voltage was taken by connecting the multi-meter with

alligator clips and the other end of the clips directly connected to the wires.

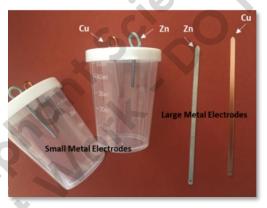
The MFC (1B) which is using the metal electrodes can reach stabler and higher power in a short time after creation, it can drive a small digital clock directly. Over time the voltage generated by the MFC increased and the peak voltages in the first 10 hours reached 0.311V in 1A and 1.468V in 1B. The MFC using graphite electrodes needs longer time to generate a small stable power which can only drive a LED light (at least 0.3V). But no matter which electrodes are used, the MFCs can generate different levels of electricity, proving that the bacteria in the soil can convert chemical energy into electrical energy.

Fixed Variable Location, Temperature, Multimeter, Alligator Clips, Soil (Backyard Garden) (Created at 8am)	Independent Variables (Time Elapsed - Daily)									
	Day 1 (01/05)	Day 2 (02/05)	Day 3 (03/05)	Day 4 (04/05)	Day 5 (05/05)	Day 6 (06/05)	Day 7 (07/05)	Day 8 (08/05)	Day 9 (09/05)	Day 10 (10/05)
Dependent Variables	V	V	V	V	V	V	V	V	V	V
Voltages (V) Carbon Felt	0.167	0.291	0.358	0.351	0.367	0.362	0.348	0.351	0.352	0.364
	V	V	V	V	V	V	V	V	V	V
Voltages (V) Metal (Cu + Zn)	1.368	1.355	1.371	1.351	1.339	1.336	1.343	1.349	1.341	1.336



Experiment 2. Electrodes of the MFCs.

2A. The distances of the electrodes.


Type 1B (metal) is used to test whether the electrode distance influences the power generated because it's easier adjustment of the electrode distance than 1A type (Carbon).

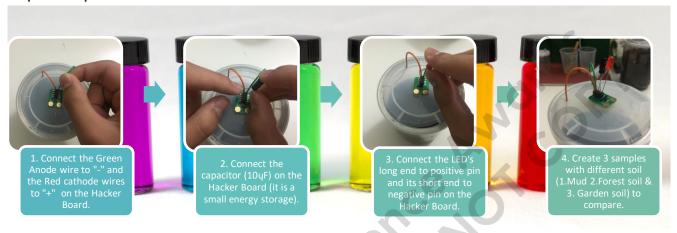
Fixed Factors	Indepen	dent Variable – Distand	ces between Electrode	s (15/05)
MFC	1 cm	3 cm	5 cm	7 cm
Same Location, Temperature Multimeter, Alligator Clips, Electrodes Materials.				
Dependent Variables	V	V	V	V
Voltages (V)	1.592	1.592	1.593	1.602
	mA	mA	mA	mA
Milliamps (mA)	1.61	1.59	1.75	1.52

2B. The sizes of the electrodes.

Two sizes of metal electrodes were used to investigate the influence of size of electrodes (keep the electrode distance constant).

Fixed Factors	Independent Variable – Distanc	ces between Electrodes (15/05)
MFC (15/05)	Large Metal Electrodes (10cm long)	Small Metal Electrodes (3cm long)
Same Location, Temperature Multimeter, Alligator Clips, Electrodes Materials, Electrode Distance (4cm).		EXTECH
Dependent Variables	V	V
Voltages (V)	1.521	0.735

Results of Experiment 2:


From the data above, it can be found that the electrode distance has no obvious correlation with the generated voltages, but the size of the electrodes affects the power generation.

Experiment 3 – Different Types of Soil (Mud/Forest Topsoil/Garden Soil).

3A. Seconds between Two Blinks.

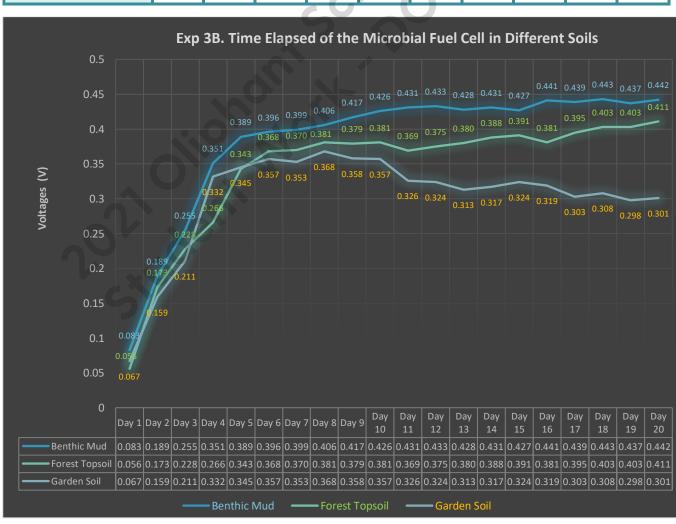
(Steps 1~3: Install the electrodes and place the sediments as Steps 1-3 for 1A by using different soil).

Step 4: Set up the Hacker Board.

Step 5: Measure the Time Duration between Two Blinks.

Fixed Variable MFC	Independent Variables (Time between Two Blinks)									
Same Location, Temperature Multimeter, Alligator Clips.	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
	16/05	17/05	18/05	19/05	20/05	21/05	22/05	23/05	24/05	25/05
Dependent Variables	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec
(Seconds) Sample 1 Soil 1 – Benthic Mud	Nil	Nil	Nil	Nil	Nil	Nil	Nil		Failed iment Suspe the connect Recreated)	ion and
Sample 2 Soil 2 – Forest Topsoil	Nil	Nil	Nil	<mark>14.26</mark>	6.37	2.30	1.73	1.82	1.91	1.81
Sample 3 Soil 3 – Backyard Garden	Nil	Nil	Nil	Nil	<mark>10.68</mark>	3.68	2.73	2.12	2.08	1.94
Sample 1 recreation.	Nil	<mark>15.20</mark>	5.56	5.10	2.97	1.83	1.43	1.38	1.32	1.16

Setup the Hacker board and the LED should start blinking after 3~7 days, the hacker board takes the low voltage and low current coming from the MFC and converts into short bursts of higher voltage and current to glow the LED light. Three MFC samples are created with different types of soil. The first sample of LED light did not glow, the experiment was terminated, and a new sample was recreated (blinks at Day 2). The MFC sample 2 took 3 days to drive LED light to blink, and the power output were still stable after a week, and sample 3 took a bit longer, which started blinking at Day 5. If the LED is blinking too fast, don't time the seconds between two blinks, the duration between 2 blinks can be obtained by measuring the time of 10 blinks. The chart in *Appendix 3*. helps the problem shooting, to achieve the goal of the experiment.


Results of Experiment 3A:

The MFC created by benthic mud first started to drive the LED to light, then the forest topsoil and the MFC created by backyard garden soil was the slowest one to light. The MFCs using different soil began to emit light within five days, and the interval of emission became shorter gradually, and the power remained stable after one week. The MFC using mud has the shortest interval between two blinks, followed by forest soil and finally the garden soil.

Experiment 3B. Electricity Generation (Voltages) in Different Types of Sediments.

Fixed Variable		ı	ndepen	dent Va	riables -	- Differe	nt Type	s of Soil	s	
Same Location, Temperature Multimeter, Alligator Clips, electrodes materials.	Day 1 (16/05)	Day 2 (17/05)	Day 3 (18/05)	Day 4 (19/05)	Day 5 (20/05)	Day 6 (21/05)	Day 7 (22/05)	Day 8 (23/05)	Day 9 (24/05)	Day 10 (25/05)
Dependent Variables Voltages (V)	V	V	V	V	V	V	V	V	V	V
Soil 1 (Benthic Mud)	0.083	0.189	0.255	0.351	0.389	0.396	0.399	0.406	0.417	0.426
Soil 2 (Forest Topsoil)	0.056	0.173	0.228	0.266	0.343	0.368	0.370	0.381	0.379	0.381
Soil 3 (Backyard Garden)	0.067	0.159	0.221	0.312	0.345	0.357	0.353	0.368	0.358	0.357
	Day 11 (26/05)	Day 12 (27/05)	Day 13 (28/05)	Day 14 (29/05)	Day 15 (30/05)	Day 16 (31/05)	Day 17 (01/06)	Day 18 (02/06)	Day 19 (03/06)	Day 20 (04/06)
	V	V	V	V	V	V	V	V	V	V
Soil 1 (Benthic Mud)	0.431	0.433	0.428	0.431	0.427	0.441	0.439	0.443	0.437	0.442
Soil 2 (Forest Topsoil)	0.369	0.375	0.380	0.388	0.391	0.381	0.395	0.403	0.403	0.411
Soil 3 (Backyard Garden)	0.326	0.324	0.313	0.317	0.324	0.319	0.303	0.308	0.298	0.301

Results of Experiment 3B: All three MFCs generate different levels of electricity, meaning that the bacteria in the soil can convert chemical energy into electrical energy. Their trends are similar, they are low at the beginning, then gradually increase with time and reach a stable status after a few days. The MFC created by mud can drive LED light to emit light on the 2nd day, and presents a stable voltage after the 3rd day, which is still maintained at 0.426V on the 10th day and can still maintain at 0.44~0.48V without adding any nutrients after couple weeks. The other two MFCs produce slightly lower electricity and are relatively slower to make LEDs glow (forest soil: 4th day; garden soil: 5th day). The power of MFC1 (0.476V after 6 weeks) & MFC2 (0.431V after 6 weeks) is still rising steadily, but the MFC3 has begun to decline from the third week (nutrients are needed after Day 25 to keep 0.35V to light the LED in MFC3; refer to the logbook for long-term experimental data record).

Experiment 4. Resistors and the Maximum Power.

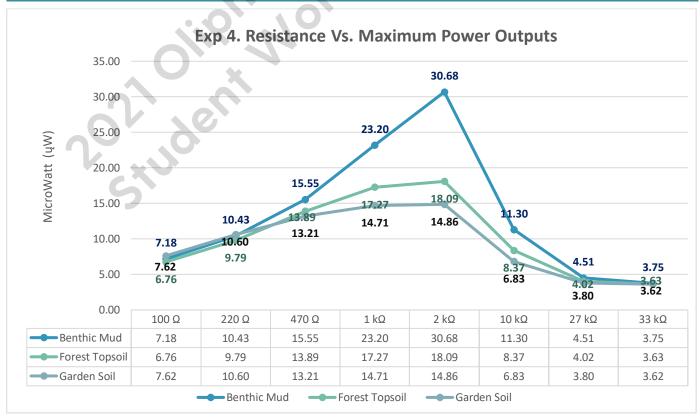

Measure the power output for three MFCs (different soil types) using the multimeter and resistors.

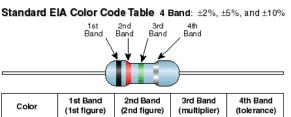
1. Remove the capacitor and LED from the Hacker Board.

2. Remove the red wire from the "+" pin and plug it into pin 3.

3. Place a resistor between pin 5 and 6, the orientation does not matter. Start with the largest-capacity resistor, which will be a 33 K Ω resistor.

4. Resistor's values are labeled using colour-coded bands (Use <u>Figure 2.</u> to determine the resistance for each resistor or using the multimeter by setting it to measure resistance).


5. Connecting the multimeter's leads on the wire ends of the resistor (leave the resistor plugged in for 2 minutes).


Fixed Variable	Independent Variables – Resistances (Ω)									
Same Location, Temperature Multimeter, Alligator Clips, electrodes materials.	100 Ω	220 Ω	470 Ω	1 ΚΩ	2 ΚΩ	10 ΚΩ	27 ΚΩ	33 ΚΩ		
Dependent Variables	mV	mV	mV	mV	mV	mV	mV	mV		
Voltages (mV) Soil 1	26.8	47.9	85.5	152.3	247.7	336.2	349.1	351.9		
(Benthic Mud) Soil 2 (Forest Soil)	26.0	46.4	80.8	131.4	190.2	289.3	329.6	345.9		
Soil 3 (Backyard Garden Soil)	27.6	48.3	78.8	121.3	172.4	261.3	320.3	345.5		

Power (Watt) = (Voltages)² / Resistances (ohms)

Power = $(0.0276V)^2 / 100$ ohms × 1,000,000 = 7.62 (Microwatt) Means power out equal to 7.62 microwatt when using 100 Ω resistor.

Fixed Variable	Independent Variables – Maximum Output (ųW)									
Same Location, Temperature Multimeter, Alligator Clips, electrodes materials.	100 Ω	220 Ω	470 Ω	1 ΚΩ	2 KQ	10 ΚΩ	27 ΚΩ	33 ΚΩ		
Dependent Variables	ųW	ųW	ųW	ųW	ųW	ųW	ųW	ųW		
Power (ųW) Soil 1 (Benthic Mud)	7.18	10.43	15.55	23.20	<mark>30.68</mark>	11.30	4.51	3.75		
Soil 2 (Forest Topsoil)	6.76	9.79	13.89	17.27	18.09	8.37	4.02	3.63		
Soil 3 (Backyard Garden Soil)	7.62	10.60	13.21	14.71	<mark>14.86</mark>	6.83	3.80	3.62		

Color	1st Band (1st figure)	2nd Band (2nd figure)	3rd Band (multiplier)	4th Band (tolerance)
Black	0	0	10º	
Brown	1	1	10 ¹	
Red	2	2	10 ²	± 2 %
Orange	3	3	10³	
Yellow	4	4	10 ⁴	
Green	5	5	10⁵	
Blue	6	6	10 ⁶	
Violet	7	7	10 ⁷	
Gray	8	8	10 ⁸	
White	9	9	10 ⁹	
Gold			10-1	±5%
Silver			10-2	±10%

Figure 2. Resistor Colour Code Table

Results of Experiment 4:

It is important to convert the voltage measurements into power output measurements. The power output depends on the resistors. The effectiveness of the MFC cannot be determined by just looking at the voltage generation alone because it is needed to convert into power for them to be more meaningful. The results show the peak powers of the MFCs were all found using a $2k\Omega$ resistor and the peak powers are 30.68 ψ (Mud), 18.09 ψ (Forest) and 14.86 ψ (Garden) respectively. The sample with mud has the highest maximum power output and the garden soil has the lowest power output, meaning the benthic mud can generate more power than garden soil. Microbes like to eat something is bioavailable and easily broken down, therefore, forest or benthic mud will produce more electricity than the soil from the garden because it contains more decaying materials and organic matter in it.

To turn soil into a cell, the most important thing you need is lots of bacteria that help generate electricity when they break down organic or inorganic substrates in the soil. The soil bacterial eat the microscopic nutrients and sugars in the soil and produce electrons that are released back into the soil. Therefore, the soil that contains more organic matter generates higher voltages and power outputs.

Experiment 5. Connection in Series.

Multiple MFCs are connected in series respectively, to measure and compare the voltages with a single MFC.

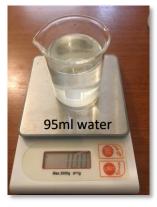
Fixed Factors	Independent Variable – Connections of the MFCs.									
MFC	MFC ①	MFC ②	MFC ③	② &③ connected in series.	①, ② &③ connected in series.					
Same Location, Temperature Multimeter, Alligator Clips, Electrodes Materials.	EXTECH									
Dependent Variables	V	V	V	V	V					
Voltages (V)	0.421	0.403	0.396	0.773	1.189					
		2+3	= 0.799	0.799	1.220					
	<u> </u>)+(2)+(3) = 1.2	20	37						

Result of Experiment 5:

When the MFCs are connected in series, the voltage will increase (0.773V when two MFCs connected in series; 1.189V when three MFCs connected in series), but the voltages are getting slightly unstable due to the internal resistance (0.773V < 0.799V; 1.189V < 1.220V), so the generated voltage will be reduced slightly. Small electrical appliances like a digital clock can be driven if multiple MFCs connected in series.

Experiment 6. Types of Nutrients

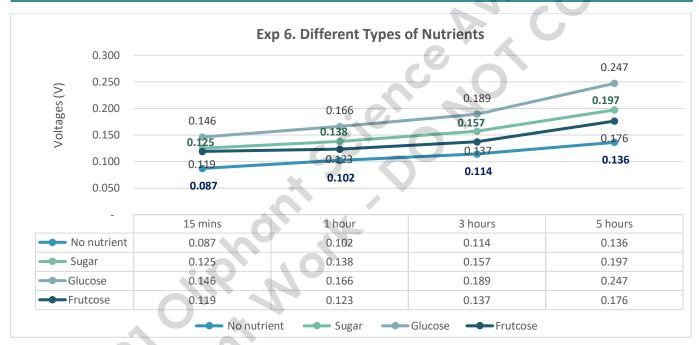
To explore the effect of added nutrients on power generation.


Nutrients:

(1) Sugar (2) Glucose (3) Fructose.

Step:

Add 5ml of different kinds of nutrients, and measure the voltages at the beginning, 1, 3 and 5 hours after adding the sugar water.



Fixed Factors	Independent Variable – Nutrients Added on the Soil.								
MFC Same Location, Temperature Multimeter, Alligator Clips, Soil, Electrodes Materials.	No nutrient Added	5ml (1) Sugar Water	5ml (2) Glucose Water	5ml (3) Fructose Water					
Dependent Variables	V	V	V	V					
Voltages (V) 15 mins	0.087	0.125	0.146	0.119					
1 hour	0.102	0.138	0.166	0.123					
3 hours	0.114	0.167	0.189	0.137					
5 hours	0.136	0.187	0.247	0.166					

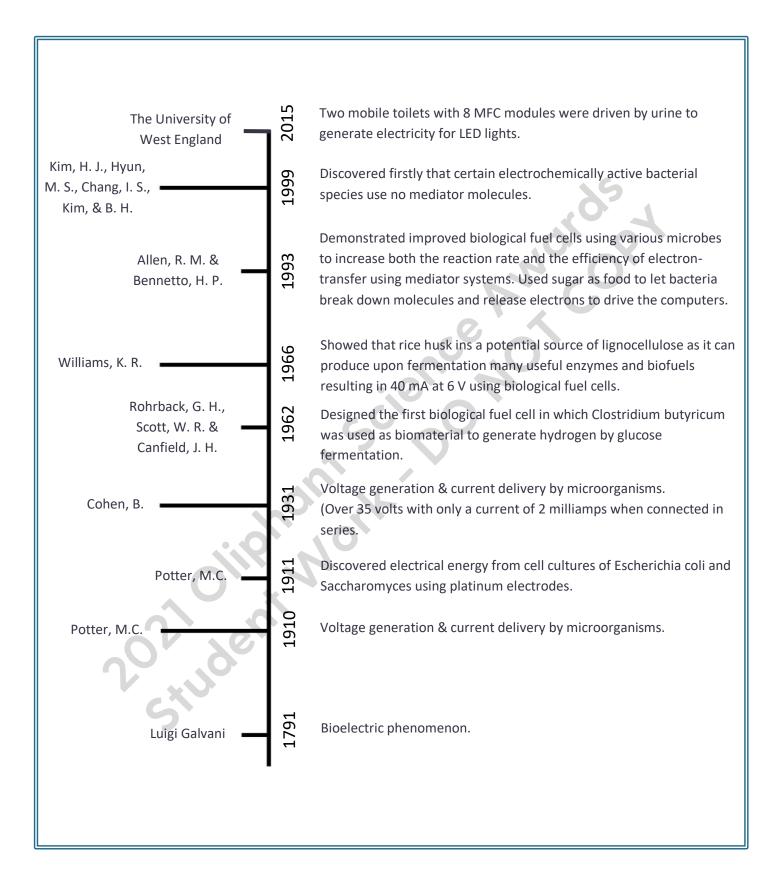
Result of Experiment 6:

From the data above, the power generations have been improved after adding nutrients. Compared with the control group without adding any nutrients, the MFC with glucose has the best power increase effect, followed by sugar and the MFC with fructose is the worst. The longer the standing time, the higher the power generated (within 5 hours). Bacteria can convert energy into electricity in the process of breaking down the raw materials for bacteria to generate electricity. The more the bacteria can make full use of nutrients, the power generation will be increased.

Conclusion

- 1. No matter what material of electrodes is used, the MFC generates electricity.
- 2. The MFC using metal electrodes generates faster, higher and stabler electricity than the one using carbon electrodes.

- 3. All samples can drive the LED to emit light, except the one that failed due to the damage of the LED component; the problem has been fixed after recreation (*Appendix 3*).
- 4. Benthic mud will produce more electricity than the soil from the garden because it contains more decaying materials and organic matter in it.
- 5. The peak powers were all found using a 2kΩ resistor which are 30.68 ųW (Mud), 18.09 ųW (Forest) and 14.86 ųW (Garden) respectively.
- 6. The electrode distance has no obvious correlation with the generated voltages, but the size of the electrodes will affect the power generation.
- 7. When multiple MFCs are connected in series, the voltage is added but the current stays the same.
- 8. The MFCs have been able to maintain stable power and kept the LED on for more than 8 weeks without adding any nutrients. It means if the nutrition can be added in time, the MFC can produce an endless stream of electricity.
- 9. Sugar, glucose and fructose can be used as the nutrients for bacteria to generate electricity.


Summary

Due to fossil fuels will not meet the future energy demand, it becomes necessary to develop sustainable and renewable energy resources and technologies. The organic matter stored in the natural environment and waste is a huge source of energy resources. Although the MFC technology has become a research hotspot, its power generation capacity has been continuously improved, but most of the results are carried out in a small laboratory, there are still many difficulties to overcome from the actual engineering application. The MFC can be used to support sustainable energy if it can be improved the efficiency and reduced the cost (*Appendix 4*). The MFC will be widely used and play an important role in reducing the waste and generate electricity in current pollution and energy shortage environment. The MFC synchronous pollution control and power generation catalytic wastewater treatment has great practical significance and potential. In the future, using bacteria and even viruses to generate electricity will no longer be the dream.

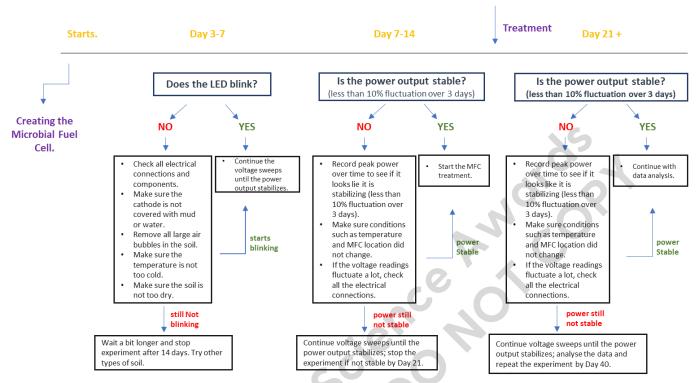
Appendix

- 2021 oliphonisk. Do Molioka 2021 oliphonisk. 1. The Developmental History of the Microbial Fuel Cells.
- 2. The Experimental Variables
- 3. Problem Solving Process
- 4. Advantages, Disadvantages of the MFCs.
- 5. Bibliography
- 6. Logbook

Appendix 1. The Developmental History of the Microbial Fuel Cells

<u>Appendix 2.</u> Experimental Variables

Independent Variable	How is it being changed?							
The type of soil used in Microbial Fuel Cell.	power generated by Microb	Three different types of soils have been used in the experiment to investigate the power generated by Microbial Fuel Cells. Find out how the electricity generated by MFCs change if different types of soil have been used.						
	Benthic Mud Topsoil from Forest	Topsoil from Forest	Backyard Garden Soil					


	Benthic Mud Topsoil from Forest	Topsoil from Forest	Backyard Garden Soil							
Dependent Variable	How is it being measured? (Voltages)									
The power generated by the	Measuring the voltages and	d current generated by diffe	rent Microbial Fuel Cells.							
Microbial Fuel Cells.	[Soil 1] Benthic Mud [Soil 2] Forest Topsoil Backyard Garden So									
Controlled Variables	independent variable	Make sure the variable cannot influence the results. This isolates the independent variable's effects on the experiment and can help rule out alternative explanations of the experimental results.								
Temperature	it may influence the activit temperature environments	y of bacteria. Different bac	mperature constant because teria can survive in different ure can avoid the influence of							

	independent variable's effects on the experiment and can help rule out alternative explanations of the experimental results.
Temperature	All MFCs will be kept in the same place to keep the temperature constant because it may influence the activity of bacteria. Different bacteria can survive in different temperature environments, maintaining the temperature can avoid the influence of the bacterial activity caused by temperature on the results.
Carbon Felts (Anode & Cathode)	Use the same carbon felts for anode and cathode for each MFC created and make sure the sizes of electrodes (carbon felts) are all the same.because the conductivity and electrode area may affect the accuracy of the experiment. The sizes of electrodes and the area of soil contact may affect the data.
Measuring Time	Make sure to measure the power generated by each MFC at the same time everyday.
Distance between electrode	Place the same amount of soil into each vessel (5 cm deep) or keep the electrodes at the same distance, making the distances between anode and cathode the same.
Vessel Size	Each vessel will be the same size and will hold the same amount of soil.
Soil Moisture	Make sure all kinds of soils are at the same level of moisture. The difference of moisture will also cause the difference of conductivity.
Nutrient content amount	Make sure to add the same volume of nutrient into soils.

Appendix 3. Problem Solving

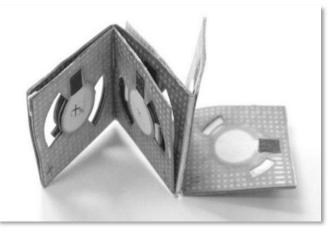
The following chart can help solve the problems that may be encountered in the experiment.

Experiment Flow Chart

Problems	One LED doesn't emit light.	Unstable Temperature	Soil Sampling			
	The experiment has to be suspended due to the LED not blinking after 7 days.	It's difficult to maintain the constant temperature in winter.	The samples were used several hours after collection.			
Impacts	Unable to get comparative data, the sample has to be recreated, which might influence the experimental results.	The activity of bacteria varies with temperature. The results may be affected by the inconsistent temperature.	The bacterial colony might have already grown exponentially.			
How to improve?	Make sure the LED and capacitor are well connected to the Hacker Board, and that they are placed in the correct orientation. After rechecking the circuit, the reason of this failure was the damage of the LED. All equipment should be checked before use.	Use an apparatus that could keep constant temperature in an enclosed environment. In addition, the influences of temperature on the power output of an MFC can be the topic of further research.	Use the sample as soon as possible.			

Appendix 4. Advantages & Disadvantages of the MFCs.

Advantages and Disadvantages of the MFCs


MFC	Advantages	Disadvantages
	 No burning is required to produce energy. High energy conversion efficiency. Wide range of raw materials. Operating conditions are mild and can work in normal temperature, normal pressure and neutral environment. Good biocompatibility and can be used as power supply for artificial organs. Environment friendly. The only waste gas produced by the MFC is Co₂. The solar cells made of bacteria can generate electricity normally in cloudy days (no effect of light intensity). 	 High power but low power density. High initial Cost, especially the electrode materials (platinum catalysts for cathodes). Bacterial metabolic losses.

Applications

Appendix 4. Bibliography

BIBLIOGRAPHY

Websites

- En.wikipedia.org. 2021. Microbial fuel cell Wikipedia. [online] Available at: https://en.wikipedia.org/wiki/Microbial fuel cell
- Sciencedirect.com. 2021. Microbial Fuel Cell an overview | ScienceDirect Topics. [online] Available at: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/microbial-fuel-cell
- Pus.acs.org. 2021. Microbial Fuel Cells: Methodology and Technology. [online] Available at: https://pubs.acs.org/doi/10.1021/es0605016
- EE Publishers. 2021. Microbial fuel cells: A new approach to waste-water treatment EE Publishers. [online] Available at: https://www.ee.co.za/article/microbial-fuel-cells-a-new-approach-to-waste-water-treatment.html
- 2021. [online] Available at:

 https://www.researchgate.net/publication/276043847 An Experimental Study of Microbial Fuel Cells

 for Electricity Generating performance characterization and capacity improvement

Images

- resistor-color-codes.jpg (1024×1229) (build-electronic-circuits.com)
- https://en.wikipedia.org/wiki/Microbial fuel cell#/media/File:SoilMFC.png
- https://secureservercdn.net/198.71.233.68/97r.1fc.myftpupload.com/wp-content/uploads/2015/10/Fuel cell.ipg

2021

Scientific Inquiry – The Power in Bacteria – The Microbial Fuel Cells (MFCs)

The MFCs Logbook

"What can affect the Microbial Fuel Cells? What is best environment for bacteria in the Microbial Fuel Cells?"

During April 2021, I searched several different topics and found out the topic I would like to do for Oliphant Science Competition 2021 and started to plan my experimental flow chart for my topic.

Topic confirmed.	26				Friday	Saturday
		27	28	29	30	May 1
The Microbial Fuel Cells (MFCs).	Design experiments to support my argument and List all materials.	List where to get or buy materials where to collect the soil samples.	Search Information and References.	Set up the platform and methods.	Soil sampling.	Experiment 1. (D1) Electrode Materials.
2	3	4	5	6	7	8
		16, 7	O			
9	Experiment 1. (Day 10)	11	12	13	14 Soil sampling.	Experiment 2A & 2B. Distances & Sizes.
16 Experiment 3A & 3B. Soil Types.	17	18	19	20	21	22
*						
23	24	25 Experiment 3A (Day 10)	26	27	28	29
						F
30	31	June 1	2	3	Experiment 3B (Day 20)	>

2021.04.25

The Microbial Fuel Cells

Experimental Record

- Confirmed the topic of the Oliphant Science Competition 2020:
 - "What can affect the Microbial Fuel Cells (MFCs)"
 "What is the best environment for bacteria in the MFCs?"
- Set up my hypothesis and experimental direction.

One of the hypotheses:

"The soil from benthic mud & forest topsoil will produce more electricity that the soil from the backyard garden because it contains more decaying material and organic matter in it."

2021.04.26 ~ 2021.04.27

Experimental Record

- Designed different experiments to support the hypothesis.
 - 1. Electrode Materials (1A: Graphite Fiber; 1B: Metal).
 - Electrodes: 2A: Distances between Electrodes (1 ~ 7cm).
 2B: Sizes of Electrodes (10cm vs 3cm).
 - 3. Different Types of Soil (Mud, Forest Topsoil, Garden Soil).
 - 4. Resistors & Maximum Power Outputs.
- 5. Connection of multiple MFCs.
- 6. Nutrients for Bacteria.
- Listed all materials and equipment for experiments (*Table 1*).

Table 1. Materials and Equipment

	Equipment	Soils
8 × Plastic Vessels with Lids	6 × Capacitor (10ųF)	Benthic Mud
4 × Carbon Felts	1 × 10mL Glucose Solution	Forest Topsoil
1 × Red Wire for Cathode	6 × LED Light	Backyard Garden Soil
1 × Green Wire for Anode	1 × Cupper Sheets & 1 × Zinc Sheets	
1 × Multimeter	1 × 5g Sugar	
6 × Alligator Clips	1 × 5g Glucose	
6 × Gloves	1 × 5g Fructose	
8 × Resistors		

2021.04.28

Experimental Record

- Searched the information and references for this project.
- Advantages and disadvantages of the MFCs.
- Lists all possible experimental variables (*Appendix 2*).
 - Dependent variables.
 - Independent variables.
 - Controlled variables.

2021.04.29

1. Build the Electrodes.

2. Collect soil samples & Add sediments into the vessels.

3. Set up the Multimeter & Measure the voltages generated.

4. Setup the Hacker Board.

5. Measure **Blinking Intervals** & Measure the Voltages.

6. Measure the Power Outputs.

Experimental Record

Set up the experimental platform and prepare to start the experiments.

Designed the method steps of creating a MFC sample.

Step 1. Build the electrodes.

- 1. Cut the carbon felt into circles (one for anode and one for cathode) while wearing the gloves.
- 2. Remove the plastic sheath (8cm long) from the green wires and bend the wire 90° where the plastic sheath ends.
- Insert the bare end of the green wire (anode) into the side of the felt while wearing the gloves.
- Repeat with the red (cathode) wire.

Step 2. Collect soil samples & add sediments.

- Collect soil from benthic mud, forest and backyard garden.
- Add soil into the vessel, followed by the anode and fill with more mud (5 cm
- 3. Place the cathode gently on the top of the mud, and make sure the top of the cathode is exposed to air.
- Make sure the moisture of each kind of soil is constant, add some water if it is too dry.

Step 3. Measure the power generated by the Microbial Fuel Cell.

- Plug the red probe (+) into the 'VQmA' port and the black probe (-) into the "COM' port.
- Connect the red probe and the red wire of the MFC with alligator clips.
- Connect the black probe and the green wire of the MFC with alligator clips.
- Turn the multimeter to V_{DC} and record the data each hour for first 10 hours.

Step 4. Hacker boards setup.

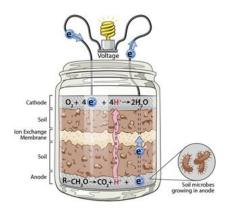
- Bend and connect the cathode wire (Red) to '+' and the anode wire (Green) to '-' on the Hacker board.
- 2. Connect the long end of the capacitor (10yF) to Pin 1 and the short end to
- Connect the LED's long end to Pin 5 and its short end to Pin 6.
- The LED should begin to blink after a few days. Measure the gap between blinks.

Step 5. Measure the duration of each blink.

- Observe which MFC sample's LED starts to light first.
- Measure the duration of 10 blinks in seconds.
- Get the duration between two blinks in seconds and compare between three different MFCs.

Step 6. Measure the power outputs of each sample.

- Remove all components from the Hacker Board except the anode wire (Green wire still in '-').
- 2. Remove the red wire from the "+" Pin and plug into Pin3.
- 3. Place a resistor between Pin 5 and 6, the orientation does not matter. Start with the largest-capacity resistor, which will be a 33 K Ω resistor.
- 4. Leave the resistor plugged in for 2 minutes and measure the voltages by using the multimeter & alligator clip.
- Calculate the power output.
 - Power (Watts) = (Voltages)² / Resistance



2021.04.30

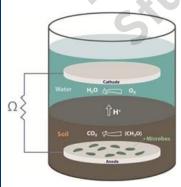
Since the moisture will affect the conductivity, it is necessary to ensure that the humidity is consistent and use three-way meter to measure the humidity and PH value and control the humidity by adding water.

Experimental Record

• Collected soil samples from the creek mud, forest topsoil and back yard garden soil.

1. Mud

2. Forest Topsoil

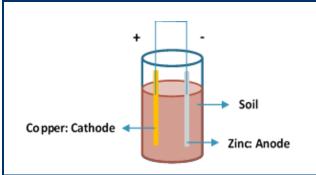

3. Backyard Garden Soil

- 1. Mud: The colour is dark gray with very high moisture (Wet = 8) and stink smell (PH = 8).
- 2. Forest topsoil: The soil colour is brown with low moisture (Wet =1.5; PH = 8).
- 3. Backyard Garden Soil: The colours is dark brown with medium to low moisture (Wet = 2.5; PH = 8).

2021.05.01 ~ 2021.05.10

Experimental Record

Create a Single-chamber MFC Sample – Type 1A (Graphite Fiber).


- Step 1: Build the electrodes
- Step 2: Collect soil samples & attach the electrodes.
- Step 3: Measure the Voltage and record the data (1A).

Result:

The MFC using graphite fiber electrodes produce smaller electricity.

Result 1A (Electrodes: Carbon Felt / Graphite Fiber)

Fixed Variable	Independent Variables (Time Elapsed: Hourly) 2021.05.01									
MFC Same Location, Temperature	9am	10am	11am	12 noon	1pm	1pm	1pm	4pm	5pm	6pm
Temperature Multimeter, Alligator Clips, Soil (Garden Soil) (Created at 8am)	J-6									
Dependent Variables	V	V	V	V	V	V	V	V	V	V
Voltages (V)	0.167	0.199	0.209	0.217	0.220	0.228	0.232	0.274	0.311	0.292
	mA	mA	mA	mA	mA	mA	mA	mA	mA	M A
Milliamps (mA)	0.22	0.28	0.29	0.30	0.33	0.35	0.33	0.40	0.42	0.45

Create a Single-chamber MFC Sample – Type 1B (Metal Electrodes).

- Step1: Build the electrodes.
- Step 2: Collect soil samples & attach the electrodes.
- Step 3: Measure the Voltage and record the data (1B).

Result:

The MFC using metal (Cu + Zn) electrodes produces larger and stabler electricity in short period.

Result 1B (Electrodes: Cu + An)

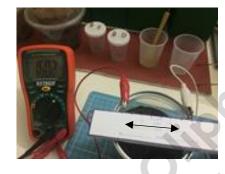
Fixed Variable MFC		Independent Variables (Time Elapsed: Hourly) 2021.05.01									
Same Location, Temperature Multimeter, Alligator Clips, Soil (Garden soil)	9am	10am	11am	12 noon	1pm	1pm	1pm	4pm	5pm	6pm	
Dependent Variables	V	V	V	V	V	V	V	V	V	V	
Voltages (V)	1.468	1.454	1.445	1.432	1.431	1.451	1.409	1.411	1.443	1.439	
1	mA	mA	mA	mA	mA	mA	mA	mA	mA	mA	
Milliamps (mA)	0.89	0.87	0.84	0.85	0.85	0.81	0.83	0.81	0.82	0.82	

Fixed Variable		Independent Variables (Time Elapsed - Daily)								
Multimeter, Alligator Clips, Soil (Backyard Garden)	Day 1 (01/05)	Day 2 (02/05)	Day 3 (03/05)	Day 4 (04/05)	Day 5 (05/05)	Day 6 (06/05)	Day 7 (07/05)	Day 8 (08/05)	Day 9 (09/05)	Day 10 (10/05)
Dependent Variables	V	V	V	V	V	V	V	V	V	V
1A - Voltages (V) Carbon Felt	0.167	0.291	0.358	0.351	0.367	0.362	0.348	0.351	0.352	0.364
5 1/ b 00	V	V	V	V	V	V	V	V	V	V
1B - Voltages (V) Metal (Cu + Zn)	1.368	1.355	1.371	1.351	1.339	1.336	1.343	1.349	1.341	1.336

Experiment 1A. Graphite Fiber Electrodes. Independent Variables: Time elapsed (havry) Experiment 14. Soil Type: Garden Soil Date: 2021.05.01 Results Milliamps (MA) Voltages (V) Time Type IA 0. 22 9am 0.167 0.28 0.199 10am cathode 0.209 0.29 llam 02 12noon 0.30 0.217 0.33 0.220 1pm (CH20 Microbes 0.35 0.228 2pm anode 0.33 0.232 3pm 0.40 0.274 4pm 0.42 0.311 5pm 0.45 0.292 6pm Independent Variables: Time etysed Charly) Experiment 1B. Soil Type: Garden Soil Date: 2021. 05.01 Results Milliamps (MA) Voltages (V) Time 9 am 0.87 1.454 10am 0.84 11 am 1.445 0.85 12 noon 1 pm 0.81 Microbes 4.5 2pm 0.83 1.409 3pm 1.411 0.81 4pm 1.443 0.82 5pm 0.82 1.439 6pm

Experiment 1B. Metal Electrodes

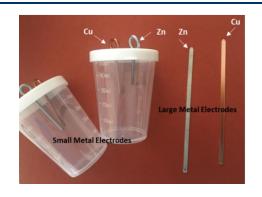
2021.05.14


Experimental Record

- Soil Sampling for next experiments:
 - Benthic Mud.
 - Forest Topsoil.
 - Backyard Garden Soil.

2021.05.15

Experimental Record


- Experiment 2A Distances between electrodes. (Garden Soil)
 - 1cm
 - 3cm
 - 5cm
 - 7cm

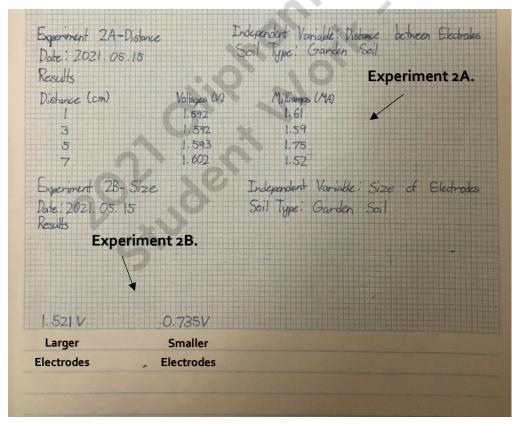
Result:

Electrode distance has no obvious correlation with the generated voltages.

Result of 2A – Distance between Electrodes

Fixed Factors	Independent Variable – Distance between Electrodes								
MFC Same Location, Temperature Multimeter, Alligator Clips, Electrodes Materials.	1 CM	3 cm	5 cm	7 cm					
Dependent Variables	V	V	V	V					
Voltages (V)	1.592	1.592	1.593	1.602					
	mA	mA	mA	mA					
Milliamps (mA)	1.61	1.59	1.75	1.52					

- Experiment 2B Sizes of the electrodes. (Garden Soil)
 - 10cm (Larger electrodes)
 - 3cm (Smaller electrodes)

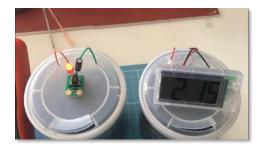

Result:

The size of the electrodes affects the power generation, the larger electrodes generate larger electricity.

Result of 2B - Size of Electrodes

Fixed Factors MFC (15/05)	Independent Variable – Size of Electrodes	
	Large Metal Electrodes (10cm long)	Small Metal Electrodes (3cm long)
Dependent Variables	V	V
Voltages (V)	1.521	0.735

Experiment 2A & 2B: Distance between Electrodes & Size of Electrodes.



2021.05.16 ~ 2021.05.25

Experimental Record

- Experiment 3A will the LED blink?
- Results: Successful all MFCs can drive the LED to blink.
- Recorded the data for 10 days.
- The MFC sample using mud has the shortest interval between two blinks, followed by forest soil sample and finally the backyard garden soil.
- The chart in <u>Appendix 3.</u> helps the problem shooting, to achieve the goal of the experiment.

Result of 3A: The Time Duration between Two Blinks.

Fixed Variable MFC	Independent Variables (Time between Two E								s)	
Same Location,	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
Temperature Multimeter, Alligator Clips.	16/05	17/05	18/05	19/05	20/05	21/05	22/05	23/05	24/05	25/05
Dependent Variables	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec
(Seconds) Sample 1 Soil 1 – Benthic Mud	Nil	Nil	Nil	Nil	Nil	Nil	Nil		Failed iment Suspe the connect Recreated)	
Sample 2 Soil 2 – Forest Topsoil	Nil	Nil	Nil	<mark>14.26</mark>	6.37	2.30	1.73	1.82	1.91	1.81
Sample 3 Soil 3 – Backyard Garden	Nil	Nil	Nil	Nil	<mark>10.68</mark>	3.68	2.73	2.12	2.08	1.94
Sample 1 recreation.	Nil	<mark>15.20</mark>	5.56	5.10	2.97	1.83	1.43	1.38	1.32	1.16

2021.05.16 ~ 2021.06.04

Experimental Record

- Experiment 3B Electricity generation in Different Types of Soil.
- Independent Variable: Soil Types.
- Recorded the data for at least 20 days.
- Results:

All three MFCs generate different levels of electricity, meaning that the bacteria in the soil can convert chemical energy into electrical energy. Their trends are similar, they are low at the beginning of creation, then gradually increase with time and reach a stable status after a few days. The power of MFC1 (0.476V after 6 weeks) & MFC2 (0.431V after 6 weeks) is still rising steadily, but the MFC3 has begun to decline from the third week (nutrients are needed after Day 25 to keep 0.35V to light the LED in MFC3).

Result of 3B: Electricity Generation (Voltages) in Different Types of Sediments. Independent Variables - Different Types of Soils Fixed Variable Same Location, Temperature Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Multimeter, Alligator Clips, (16/05) (17/05) (18/05) (19/05) (20/06) (21/05) (22/05) (23/05) (24/05) (25/05) electrodes materials. Dependent Variables ٧ ٧ ٧ ٧ ٧ ٧ ٧ ٧ V ٧ Voltages (V) Soil 1 0.083 0.189 0.255 0.351 0.389 0.396 0.399 0.406 0.417 0.426 (Benthic Mud) Soil 2 0.379 0.056 0.228 0.266 0.368 0.381 0.381 0.173 0.343 0.370 (Forest Topsoil) Soil 3 (Backyard Garden) 0.067 0.159 0.221 0.312 0.368 0.345 0.357 0.353 0.358 0.357 Day 11 Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 (26/05) (01/06)(02/06)(03/06)(04/06) (27/05) (28/05) (29/05) (30/05)(31/05)V V V V V V V Soil 1 0.441 0.431 0.433 0.428 0.431 0.427 0.439 0.443 0.437 0.442 (Benthic Mud) Soil 2 0.388 0.391 0.380 0.381 (Forest Topsoil) 0.369 0.375 0.395 0.403 0.403 0.411 Soil 3 (Backyard Garden)

For more experimental data of Experiment 3B, please refer to the handwritten logbook on the next page.

0.313

0.317

0.324

0.319

0.303

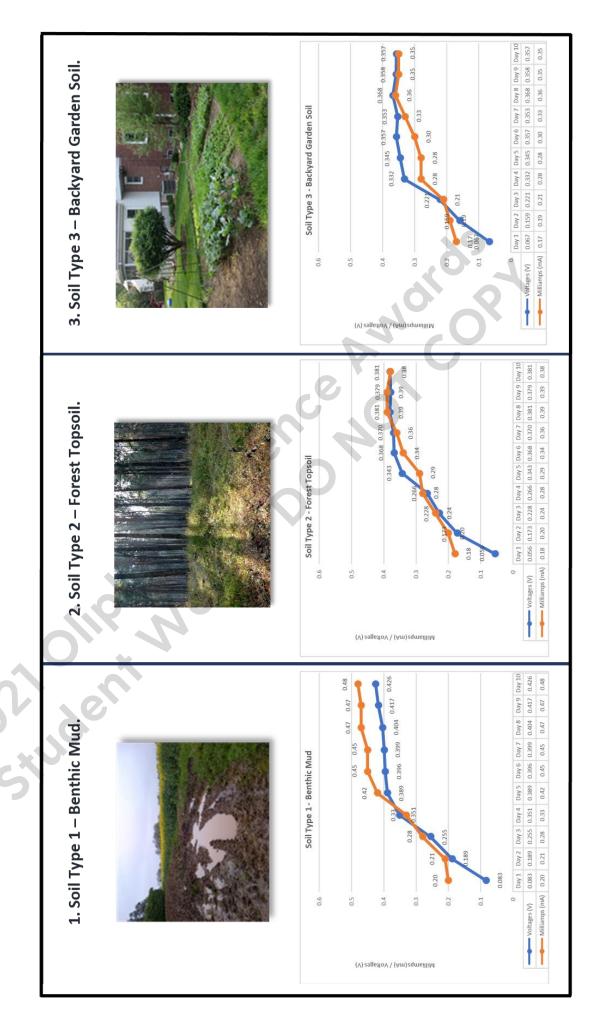
0.308

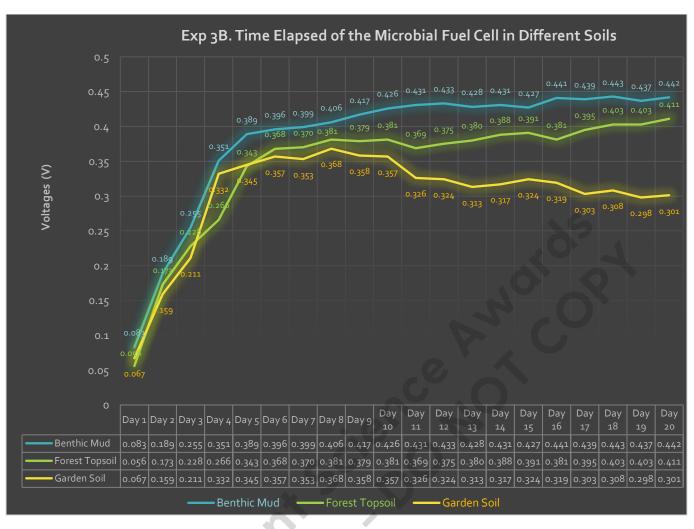
0.298

0.301

0.326

0.324




Independent Variable: Time elapsed (daily)

Experiment 3B Date: 2021.05.16-2021.06.23

Results		Voltages (V)		
Time (Day)	1(Mid)	2 (Forest)	3(Garden)	Experiment 3B.
1	0.083	0.056	0.067	
3	0.189	0.173	0.159	
3	0.255	0. 228	0. 221	
4	0.357	0.266	0.312	
5	0.399	0. 344	0.345	
6	0.396	0. 369	0.357	
7	0.399	0.370	0.353	
8	0.406	0. 381	0.369	
9	0.417	0.379	0.358	
10	0.426	0.381	0.357	
1/	0.431	0.369	0.326	
12	0.433	0. 325	0.324	
13	0.428	0.380	0.313	
14	0.431	0.388	0.317	
15	0.427	0.39/	0.324	
16	0.441	0.38	0.319	
17	0. 439	0.395	0.303	
18	0.443	0.403	0.308	
19	0.437	0.403	0.298	
20	0.442	0.411	0.301	
21	0.446	0.425	0.291	
22	0.439	0.478	0.296	
23	0.448	0.431	0.203	
24	0.449	0.434	0.188	
25	0.455	0.435		dding nutrient (5g sugar, 95ml made
26	0.453	0.454	0.352	of search to the
27	0.464	0.441	0.345	
28	0.467	0.441	0.357	
29	0.471	0.462	0.336	
30	0.469	0.447	0.314	
31	0.466	0.448	0.311 0.316	
33	0.461	0.436	0.316	
34	0.465	0.438	O. 318 O. 322	
35	0.466	0.435	0.326	
36 37	0.473	0.441	0.321	
38 39	0.468	0.443	0.372	
40	0.476	0.439	0.321	

Comparison of Electricity Generation in Different Soils.

June

2021

Scientific Inquiry – The Power of Bacteria – The Microbial Fuel Cells (MFCs)

The MFCs Logbook

"What can affect the Microbial Fuel Cells? What is best environment for bacteria in the Microbial Fuel Cells?"

During May and June, several experiments had been created to investigate how bacteria generate electricity and the impacts of various materials and factors on the power generation by Microbial Fuel Cells (MFCs).

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1	2	3	4	Experiment 4.
						Resistors & Power Output.
6	7	8	9	10	11	12
		16, 1	0	→	Experiment 5. Connection in Series.	
13	14	15	16	17	18 Experiment 6.	19
				•	Types of Nutrients	
20	21	22	23	24	25	26
Organized all records and data.	Organized all records and data.		•	Experiment 3A (Day 40)	Organized pictures for report/logbook.	Organized pictures for report/logbook.
<u>ldı.</u>	111.					
Organized pictures for report/logbook.	28	29	30			

Experimental Record

Experiment 4. Resistors and the Maximum Power.

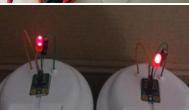
• Independent Variable: Voltages with Different Resistors.

Power (Watt) = (Voltages)²/ Resistances (ohms)

Results:

The voltages are higher if using larger resistors. From the equation above, the maximum power output can be calculated.

The peak powers of the MFCs were all found using a $2k\Omega$ resistor and the peak powers are 30.68 ψ W (Mud), 18.09 ψ W (Forest) and 14.86 ψ W (Garden) respectively. The sample with mud has the highest maximum power output and the garden soil has the lowest power output, meaning the benthic mud can generate more power than garden soil.

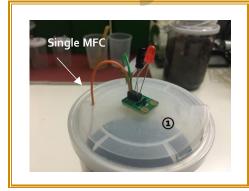

Result 4: Resistors & the Maximum Power Output.

Fixed Variable	Independent Variables – Resistances (Q)										
Same Location, Temperature Multimeter, Alligator Clips, electrodes materials.	100 Ω	220 Ω	470 Ω	ıKΩ	2 KQ	10 ΚΩ	27 ΚΩ	33 KQ			
Dependent Variables	mV	mV	mV	mV	mV	mV	mV	mV			
Voltages (mV) Soil 1 (Benthic Mud)	26.8	47.9	85.5	152.3	247.7	336.2	349.1	351.9			
Soil 2 (Forest Soil)	26.0	46.4	80.8	131.4	190.2	289.3	329.6	345.9			
Soil 3 (Backyard Garden Soil)	27.6	48.3	78.8	121.3	172.4	261.3	320.3	345.5			

Fixed Variable			In	depen	dent	Varial	oles –	Powe	r Out _l	out (ų	W) & '	Voltag	ges (m	V)		
MFC	10	Ω 0	220	Ω Ω	47	0 Ω	11	KΩ	2	ΚΩ	10	ΚΩ	27	ΚΩ	33	ΚΩ
Dependent Variables Voltages (mV) & Power (ųW)	mV	ųW	mV	ųW	mV	ųW	mV	ųW	mV	ųW	mV	ųW	mV	ųW	mV	ųW
Soil 1 (Backyard Garden)	27.6	7.62	48.3	10.60	78.8	13.21	121.3	14.71	172.4	14.86	261.3	6.83	320.3	3.80	345.5	3.62
Soil 2 (Forest Topsoil)	26.0	6.76	46.4	9.79	80.8	13.89	131.4	17.27	190.2	<mark>18.09</mark>	289.3	8.37	329.6	4.02	345.9	3.63
Soil 3 (Benthic Mud)	26.8	7.18	47.9	10.43	85.5	13.55	152.3	23.20	247.7	30.68	336.2	11.30	349.1	4.51	351.9	3.75

2021.06.11

Experimental Record


- Started Experiment 5.
- Independent Variable: Numbers of the MFCs.
- Connecting 2 or 3 MFCs in series and comparing the voltages with a single MFC.

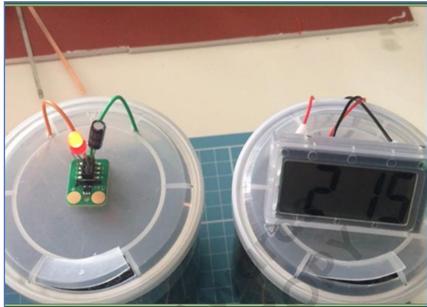
Results:

When the cells are connected in series, the voltage and current are unstable due to the internal resistance, so the generated voltage will be reduced.

- Voltage of (2)(3) in series < Voltage of (2)+(3)
- Voltage of ①②③ in series < Voltage of (①+②+③)

Fixed Factors	Independent Variable – Connections of the MFCs.									
MFC	MFC ①	мгс ②	мгс ③	2 & 3 connected in series.	①, ② &③ connected in series.					
Same Location, Temperature Multimeter, Alligator Clips, Electrodes Materials.	EXTECH									
Dependent Variables	V	V	V	V	V					
Voltages (V)	0.421	0.403	0.396	0.773	1.189					
	②+③ = 0.799			0.799	1.220					
20,1	1)+(2)+(3) = 1.2	20							

2021.06.18	Experimental Record
Nutrients: (1) 5g Sugar + 95ml Water (2) 5g Glucose + 95ml Water (3) 5g Fructose + 95ml Water Add 5ml of different kinds of nutrients, and measure the voltages at the beginning, 1, 3 and 5 hours after adding the sugar water.	 Started Experiment 6. Independent Variable: Types of Nutrients. Results: From the data above, the power generations have been improved after adding nutrients. Compared with the control group without adding any nutrients, the MFC with glucose has the best power increase effect, followed by sugar and the MFC with fructose is the worst. The longer the standing time, the higher the power generated (within 5 hours). Sugar, glucose and fructose can be used as the nutrients for bacteria to generate electricity.


Fixed Factors	Indep	oendent Variable – N	lutrients Added on the	· Soil.
MFC Same Location, Temperature Multimeter, Alligator Clips, Soil, Electrodes Materials.	No nutrient Added	5ml (1) Sugar Water	5ml (2) Glucose Water	5ml (3) Fructose Water
Dependent Variables	V	V	V	V
Voltages (V) 15 mins	0.087	0.125	0.146	0.119
1 hour	0.102	0.138	0.166	0.123
3 hours	0.114	0.167	0.189	0.137
5 hours	0.136	0.187	0.247	0.166

2021.06.20 ~ 2021.06.21

Experimental Record

Organized all records and data.

2021.06.25 ~ 2021.06.27

Experimental Record

Organized pictures for report & logbook.

2021

Scientific Inquiry – The Best Colour of Rainbow Dye-Sensitized Solar Cells (DSSCs).

The Power in Bacteria: The MFCs.

Started writing the report, logbook, and OSA Risk Assessment Form for my project during July 2021 and will upload the report and all documents required on July 20th before the due date.

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			7	1	2	3
		3		Report Writing	Report Writing	Report Writing
				D	<i>D</i>	D
4	5	6	7	8	9	10
Report Writing	Report Writing	Report Writing				
11	12	13	14	15	16	17
Report Writing	Report Writing	Report Writing	Report Writing	OSA Risk		
				Assessment Form		
				A		
18	19	20	21	22	23	24
		Upload Report	Due Date			
	640					
25	26	27	29	29	30	31

2020.07.01 ~ 2020.07.14

Experimental Record

- Started writing report.
- A three-week school holiday is a good chance to concentrate on writing experimental reports.
- Because of COVID-19, it is not possible to arrange family travel, so it is very suitable to write report at home.

2020.07.15	Experimental Record
OSA RISK ASSESSMENT FORM for all entries in (*) CI Models & Inventions and CI Scientific Inquiry This must be included with your report, log book or entry. One form per entry. NAME: SCHOOL: Activity. Give a brief outline of what you are planning to do.	 Started writing OSA Risk Assessment Form. Brief abstract about the purpose of this project. This project belongs to low risk, it is not difficult to learn the basic knowledge and the manufacturing process is simple and safe, which is suitable for students to study and do experiments.
Are there possible risks? Consider the following: Ominion inside. No you using chromosols? If no, check with your teacher that any chemicals to be used are not be approved for a branks. Other that he safety requirements for their use, such as one protection and only the process of the control of their confidence. There and status Are you heating things? Could you be burn? Biological makes. You working with thin companies such as morable and bursting? Burneys make Are you conting three, and it there a make of large from sharp objects? Bestimated makes they using makes (Abd on extractly) from well you make such that this is safe? Could be the control of t	Risks: 1. Biological Risks: Enclosed footwear and gloves must be worn while sampling soil. Wash skin area that comes in contact immediately and after experiments. Remove gloves after handling bio-hazardous material to prevent cross contamination.
RIDK ASSESSMENT COMPLETED BY (student name(s)): SGMATURE(is): By SKINF (in this, 1) we state that my/our project adheres to the listed order/a for this Category, TEACHER IN MINE: SGMATURE: DATE:	2. Electrical Risks: Do not put the electrodes near power plugs. Do not disperse the fibers in the air to prevent electrical shortages. Connect the electrodes and components correctly.

The Power in Backer. The Records from Cales Wide Water and A International Wide Color State Color St

2020.07.20 ~ 2020.07.21

Experimental Record

- Back to school.
- Uploaded the project:
 - 1. Front cover page
 - 2. Main report
 - 3. Logbook
 - 4. OSA Risk Assessment Form
- Finished the task of Oliphant Science Award Scientific Inquiry 2021.