OLIPHANT

\\

Prize Winner

Programming, Apps &
Robotics

Year 7-8

Thomas Palmer

Pedare Christian College

Australian Government of South Australia

Department of Defence Department for Education

SpaceX Starship Simulator:

By Thomas Palmer

Scientific Purpose:

Hundreds of objects are sent into space, and millions of dollars are wasted each year through
failures (Aerospace CSIS 2020). StarshipSim can be used by potential customers of SpaceX
to accurately simulate whether their payloads can withstand the immense stresses an object
is subjected to when travelling into space without leaving the ground. Before manufacturing,
an individual part, system or the entire vehicle can be simulated 100’s of times with no extra
cost. Satellites, Space Stations and Spacecraft can all be tested.

StarshipSim is designed for the SpaceX Starship launch vehicle only, which is currently under
development by SpaceX, with an orbital test expected in the coming weeks. This program will
reduce the likelihood of catastrophic incidents, and could save billions of dollars in damages.

StarshipSim demonstrates the fundamental laws of physics, thermodynamics, fluid dynamics
and drag to achieve high accuracy in the simulation of travelling through the atmosphere,
getting into orbit and speeding towards other celestial bodies.

Using the Program:

After loading, a few questions will appear on the screen. After answering, the vehicle will be
ready to launch. It will automatically set itself on a trajectory to achieve a stable orbit, and
from there another program is used to simulate interplanetary flight. A detailed method is
available under the Methods section.

Loading the Program:
The program runs in Python 3.7 using the PyPi modules: Pygame, Thorpy, OS, and EasyGui.

To open the demonstration video, access Google Drive, open StarshipSim and either use the
built-in or third-party video player available on the device.

Entering Payload Specifications:

The first question is ‘What is the Payload Weight in kilograms?’. This sets the weight of the
product that the consumer wishes to travel into space. The next question is ‘What is the
Payload G-Force Rating?’. This sets the gravitational force stresses the payload can withstand
before critical failure. The final question is ‘What is the temperature rating in celsius?’. This
sets the temperature that the payload can withstand before critical failure. Submit answers by
clicking Enter. After completing these questions, the vehicle is ready to launch.

Controls:

By pressing the UP arrow key, if all prior steps were completed properly, then the vehicle will
begin to launch. The movement, time and stress statistics are shown in the bottom left-hand
corner of the screen. The vehicle will set itself on a suitable trajectory to achieve orbit. From
there, transferring to the program interplanetary.py will enable the vehicle to travel to either
the Moon or Mars.

If the payload ratings were exceeded, then the mission will end in a failure and the rocket will
explode. This shows that the payload is not robust enough to withstand the stresses of the
mission.

Method:
1. Load StarshipSim2.py using instructions under “Loading the Program”.

2. Answer the three questions ‘What is the Payload Weight in kilograms?’, ‘What is the
Payload G-Force Rating’ and ‘What is the temperature rating in celsius?’ by entering a
value and pressing Enter or selecting OK. Examples are shown below.

- 0 X — O x
What is the Payload Weight in kgs What is the Payload G-Force rating?
[od | B
oK Cancel oK Cancel
- O X

What is the Payload Temperature Rating:

0K Cancel

3. The flight data will need to be recorded manually by the user. An automated system is
currently under development.

lsoq

4. To ignite the first stage of the vehicle click the UP arrow key

5. Notice in the left-hand corner of the screen that vehicle data is displayed in real-time.

6. The vehicle will steer itself on a predetermined course utilising data from the SpaceX
Falcon Heavy vehicle launches.

7. To continue on for interplanetary travel, load interplanetary.py using instructions under
“Loading the Program”.

- 0O % - O X
What is the Payload Weight in kgs What is the Payload G-Force rating?
[od | B
oK Cancel oK Cancel
- 0O X

what is the destimation of this journey?

Maoon |
A
] | =

Cancel oK

9. Press the UP arrow key to ignite the interplanetary stage.

10. The layout of the screen is nearly identical to the orbital program.

RapidRockets|

11. Once finished on either program, click esc to exit.

The Program:
The programs were written in Python 3.7 and a copy of the code is displayed below.

StarshipSim2.py
import pygame, thorpy, os, playsound, easygui
os.environ['SDL AUDIODRIVER"] = 'dsp'

pygame.init ()

Initial Parameters and Variables / Constants

fuel = 3725 #tonnes

payload = easygui.enterbox ("What is the Payload Weight in kgs", "Payload
Weight")

payload2 = easygui.enterbox ("What is the Payload G-Force rating?", "Payload
Weight")

payloadw = float (payload)

fuelburnt = 0.112 * (payloadw/2500)#1/10th Second

fuelburnl 1.12 #1/10th Second

screenHeight = 1000

screenWidth = 1000

screen = pygame.display.set mode ((screenWidth, screenHeight))

pygame.display.set caption("Spacex Starship Simulator")

All the characters at different angles

starship = pygame.image.load ("/mnt/chromeos/MyFiles/Downloads/emship.png")
Normal Character

background =

pygame.image.load ("/mnt/chromeos/MyFiles/Downloads/embackground.jpg") # For
background

bellyflops =

pygame.image.load ("/mnt/chromeos/MyFiles/Downloads/emship90.png") # For
descent

background2 =

pygame.image.load ("/mnt/chromeos/MyFiles/Downloads/interplanetary.jpg") #
For background

explosion =

pygame.image.load ("/mnt/chromeos/MyFiles/Downloads/emexplosion.png")
#Change to png / For explosion

Miscellaneous Constants
yvelO = 0

xvel = 0

width = 64 # In Pixels
height = 64 # In Pixels

Time Constants and Variables

time delta = 0.1 # In seconds
time = pygame.time.get ticks()
t =0

counter = 0

Coordinate Constants for Starship
xx = 0 # Background set coordinate
vy 0 # Background set coordinate
x0 900 # Starship set coordinate
y0 = 800 # Starship set coordinate

Acceleration Constants

accscale = 100

dacceleration = 0.03535

lacceleration = 0.0264

vacceleration = -0.0023 # Metres per second 2
xacceleration = -0.000023

Acceleration Equivalents

dacc = dacceleration
vacc = vacceleration
lacc = lacceleration
xacc = xacceleration
x = x0

yvel = yvelO
y = vy0
running = True

The program loop
while running:
pygame.time.delay (100)

Setting up the screen
screen.fill ((0, 0, 0), (200, 0, 770, 770))
screen.blit (background, (xx, vy))

Enabling key recognition
pygame.event.get ()
keys = pygame.key.get pressed()

Landing sequence for the vehicle
if keys[pygame.K 1] and 800 > y > 793:
screen.fill ((0, 0, 0), (0, 0, 1000, 1000))
screen.blit (background, (xx, yy))
screen.blit (starship, (x, Vv))
currveld = dacc
currveld += (-currvel/1000)
yold =y
The equation for vertical position
y = yold + (yvel * t) + 0.5 * currveld * (t * t)
currvel = (y - yold) / time delta
if t < 1:
t =1
print (currvel, yveld, V)
currvel = (y - y0) / t
if y >= 800.1:
y = 800.12

To exit the program
elif keys[pygame.K ESCAPE]:
running = False

To achieve orbit
elif keys[pygame.K UP] and 805 > y > O:
takeoff = True
while takeoff:
pygame.event.get ()
keys = pygame.key.get pressed()
while fuel < 200:
currvel = 0
pygame.time.delay (3000)
if currvel >= 0:
fuel = 201
takeoff = False
if keys[pygame.K ESCAPE]:
takeoff = False

running = False
if v < 0:
y =0
takeoff = False
xold = x
yold =y
y = yold + vel * t) + 0.5 * vacc * (t * t)

x = xold +

Yy
xvel * t) + 0.5 * xacc * (t * t)
screen.fill ((

o, 0, 0), (200, 0O, 770, 770))
background, (xx, yy))

—_~ o~~~

screen.blit

currvel = (y - yold) / time delta

position y

t += time delta
currvel = (y - y0) / t
print ("Average velocity is: ", currvel, " at time ", t,
", vy, "and position x", x)
if currvel <= -20:
currvel = -20
if y >= 800:
y = 800
fuel -= fuelburnt
if fuel < 200 and currvel >= 0:
fuel = 201
takeoff = False

yveld = round(currvel * -100, 1)

Setting up the Statistics display
yveld = round(currvel * -100, 1)
fueld = round((fuel/3725)*100, 1)
fueldisplay = str (fueld)
rapid = thorpy.Element ("RapidRockets")
yveldisplay = str (yveld)
velocity = thorpy.Element (yveldisplay)
text = thorpy.Element ("Velocity = ")
elev = round((800 - y) * 150)
if elev > 119000:
pygame.time.delay (1000)
currvel = 0.0001
takeoff = False

eveldisplay = str(elev)
elevation = thorpy.Element (eveldisplay)

text2 = thorpy.Element ("Elevation = ")
text3 = thorpy.Element("Time = ")
text4d = thorpy.Element ("Fuels = ")
text5 = thorpy.Element ("G-Force =")

tround = round (t*2)
if tround ==
tround = 1
gforce = round((yveld/tround) / 9.8 + 1, 2)
gforcedisplay = str(gforce)
time22 = str (tround)
time2 = thorpy.Element (time22)
rocketfuel = thorpy.Element (fueldisplay)

rocketg = thorpy.Element (gforcedisplay)

and

box = thorpy.Box([rapid, text4, rocketfuel, textb5, rocketg,
text3, time2, text, velocity, text2, elevation])

velocity.set main color ((105, 105, 105))
text.set main color((105, 105, 105))
text2.set main color((105, 105, 105))
text3.set main color((105, 105, 105))
textd.set main color((105, 105, 105))
text5.set main color((105, 105, 105))
rocketg.set main color ((105, 105, 105))

pygame.

pygame.

pygame.

pygame.

pygame.

pygame.

rocketfuel.set main color ((105, 105, 105))
time2.set main color((105, 105, 105))
elevation.set main color((105, 105, 105))
velocity.set font color ((255, 255, 255))
text.set font color((255, 255, 255))
text3.set font color((255, 255, 255))
textd.set font color((255, 255, 255))
text5.set font color((255, 255, 255))
rocketg.set font color((255, 255, 255))
rocketfuel.set font color((255, 255, 255))
time2.set font color((255, 255, 255))
text2.set font color((255, 255, 255))
elevation.set font color ((255, 255, 255))
box.set main color((0, 0, 0))

box.set center pos([50, 700])

box.set size([90, 400])
box.set font ("century")

box.update ()

screen.blit (starship, (x, vy))
box.blit ()
Setting up the trajectory

if elev >= 1000:
starship =

image.load ("/mnt/chromeos/MyFiles/Downloads/emship-5.png")

xacc -= 0.000005

if elev >= 3000:
starship =

image.load ("/mnt/chromeos/MyFiles/Downloads/emship-10.

xacc —= 0.000000005
if elev >= 5000:
starship =

image.load ("/mnt/chromeos/MyFiles/Downloads/emship-20.

xacc —-= 0.00000005
if elev >= 10000:
starship =

image.load ("/mnt/chromeos/MyFiles/Downloads/emship-35.

xacc -= 0.00000125
if elev >= 20000:
starship =

image.load ("/mnt/chromeos/MyFiles/Downloads/emship-45.

xacc -= 0.00000015
if elev >= 79000:
starship =

image.load ("/mnt/chromeos/MyFiles/Downloads/emship-70.

xacc -= 0.000000175

if elev >= 118000:

pngn)

png")

png")

png")

png")

starship =

pygame.image.load ("/mnt/chromeos/MyFiles/Downloads/emship.png")

Character
xacc = 0

if x < 1:
x =1
pygame.display.update ()

Simulating orbit and re-entry
elif 0 < y <= 799 and not keys[pygame.K 1]:
screen.blit (bellyflops, (x, Vy))
if elev > 100000:
currveld = 0.000001

else:
currveld = -currvel/1000
yold = vy
y = yold + (yvel * t) + 0.5 * currveld * (t * t)
currvel = (y - yold) / time delta
if elev < 80000:
t += 0.05
if ¢t < 1:
t =1
print (currvel, yveld, vy)
currvel = (y - y0) / t
if currvel > -1.91:
currvel = -1.917

print (currvel, yveld, vy)

yveld = round(-currvel * 100)
thorpy.Element ("RapidRockets")
yveldisplay = str(yveld)

rapid

velocity = thorpy.Element (yveldisplay)
text = thorpy.Element ("Velocity = ")

elev = round((800 - y) * 150)

eveldisplay = str(elev)

elevation = thorpy.Element (eveldisplay)
text2 = thorpy.Element ("Elevation = ")
box = thorpy.Box([rapid, text, velocity, text2,
velocity.set main color ((105, 105, 105))
text.set main color((105, 105, 105))
text2.set main color((105, 105, 105))
elevation.set main color ((105, 105, 105))
velocity.set font color ((255, 255, 255))
text.set font color ((255, 255, 255))
text2.set font color((255, 255, 255))
elevation.set font color ((255, 255, 255))
box.set main color ((0, 0, 0))

box.set center pos([50, 840])
box.set size ([90, 2201])
box.set font ("century")

box.update ()

Normal

elevation])

box.blit ()

if (currvel < -0.02 and y > 800.1) or fuel ==
screen.fill ((0, 0, 0), (200, 0, 800, 869))
screen.blit (background, (xx, yy))
screen.blit (explosion, (x, Vy))
pygame.time.delay (3000)
running = False

elif y < 1:
y =1
screen.blit (starship, (x, Vv))

elif y >= 795:
y = 800
screen.blit (starship, (x, Vv))
yvel = yvelO

pygame.display.update ()
pygame.quit ()

interplanetary.py
import pygame, thorpy, os, playsound, easygui

os.environ['SDL AUDIODRIVER'] = 'dsp'
pygame.init ()

Initial Parameters and Variables / Constants

fuel = 3725 #tonnes

payload = easygui.enterbox ("What is the Payload Weight in kgs?", "Payload
Weight")

payload2 = easygui.enterbox ("What is the Payload G-Force rating?", "Payload
Weight")

destination = easygui.choicebox ("What is the destination of this journey?",
"Destination", ["Mars", "Moon"])

payloadw = float (payload)

screenHeight = 1000

screenWidth = 1000

screen = pygame.display.set mode ((screenWidth, screenHeight))
pygame.display.set caption("Spacex Starship Simulator")

ALl the characters at different angles

starship = pygame.image.load ("/mnt/chromeos/MyFiles/Downloads/emship.png")
Normal Character

background =

pygame.image.load ("/mnt/chromeos/MyFiles/Downloads/embackground.jpg") # For
background

bellyflops =

pygame.image.load ("/mnt/chromeos/MyFiles/Downloads/emship90.png") # For
descent

mobackground =

pygame.image.load ("/mnt/chromeos/MyFiles/Downloads/earthmoon.jpg") # For
background

mabackground =

pygame.image.load ("/mnt/chromeos/MyFiles/Downloads/earthmars.png") # For
background

explosion =

pygame.image.load ("/mnt/chromeos/MyFiles/Downloads/emexplosion.png")
#Change to png / For explosion

Miscellaneous Constants
yvelO = 0

xvel = 0

width = 64 # In Pixels
height = 64 # In Pixels

Time Constants and Variables

time delta = 0.1 # In seconds
time = pygame.time.get ticks()
t =0

counter = 0

Coordinate Constants for Starship
xx = 0 # Background set coordinate

Yy
%0
y0 = 800 # Starship set coordinate

0 # Background set coordinate

120 # Starship set coordinate

Acceleration Constants

accscale = 100

dacceleration = 0.03535

lacceleration = 0.0264

vacceleration = -0.01 # Metres per second 2
xacceleration = -0.00000655

Acceleration Equivalents

dacc = dacceleration
vacc = vacceleration
lacc = lacceleration
xacc = xacceleration
x = x0

yvel = yvelO

y = yO0

fuelburnt = 0.112 * (payloadw/2500) # 1/10th Second

screenHeight = 1000

screenWidth = 1000

screen2 = pygame.display.set mode ((screenWidth, screenHeight))
pygame.display.set caption("Spacex Starship Simulator Interplanetary")
running2 = True

Setting up the running loop
while running2:

pygame.time.delay (100)

pygame.event.get ()
keys = pygame.key.get pressed()

if keys[pygame.K UP] and 805 > y > 0:
takeoff = True
while takeoff:
pygame.event.get ()
keys = pygame.key.get pressed()
while fuel < 200:
currvel = 0
pygame.time.delay (3000)
if currvel >= 0:
fuel = 201
takeoff = False
if keys[pygame.K ESCAPE]:
takeoff = False

running = False
if v < 0:

y =0

takeoff = False
xold = x
yold = vy

y = yold + (yvel * t) + 0.5 * vacc * (t * t)
x = xold + (xvel * t) + 0.5 * xacc * (t * t)

currvel = (y - yold) / time delta
t += time delta
currvel = (y - y0) / t

screen.fill ((0, 0, 0), (100, O, 1000, 1000))
if destination == "Moon":
screen.blit (mobackground, (xx, yy))
tround = round(t * 9910)

elif destination == "Mars":
screen.blit (mabackground, (xx, yy))
tround = round(t * 35480)

currvel -= 21
print ("Average velocity is: ", currvel, " at time
position y ", vy,
"and position x", x)

if y >= 800:

y = 800
fuel -= fuelburnt
if fuel < 200 and currvel >= O0:

fuel = 201

takeoff = False

currvel = -0.001

if currvel <= -90:
currvel = -90

Setting up the Statistics display
yveld = round(currvel * -1000, 1)
fueld = round((fuel / 3725) * 100, 1)
fueldisplay = str (fueld)
rapid = thorpy.Element ("RapidRockets")
yveldisplay = str(yveld)
velocity = thorpy.Element (yveldisplay)
text = thorpy.Element ("Velocity = ")
if destination == "Moon":
elev = round((((800 - y) * 720000) + 119000) / 1000)
if elev > 310000:
takeoff = False
running2 = False
elif destination == "Mars":
elev = round((((800 - y) * 653040000) + 119000) / 1000)
if elev > 325000000:
takeoff = False
running2 = False
eveldisplay = str(elev)
elevation = thorpy.Element(eveldisplay)
text2 = thorpy.Element ("Elevation = ")
text3 thorpy.Element ("Time = ")
text4d = thorpy.Element ("Fuels = ")
text5 = thorpy.Element ("G-Force =")
if tround ==

tround =1

gforce = round((yveld / tround) / 9.8 + 1, 2)

gforcedisplay = str(gforce)

time22 = str (tround)

time2 = thorpy.Element (time22)

rocketfuel = thorpy.Element (fueldisplay)

rocketg = thorpy.Element (gforcedisplay)

box = thorpy.Box ([rapid, text4, rocketfuel, text5, rocketg,

text3, time2, text, velocity, text2, elevation])

velocity.set main color ((105, 105, 105))

text.set main color((105, 105, 105))

text2.set main color((105, 105, 105)

text3.set main color((105, 105, 105)

text4.set main color((105, 105, 105)

text5.set main color((105, 105, 105)

rocketg.set main color ((105, 105, 105))

rocketfuel.set main color ((105, 105, 105))

time2.set main color((105, 105, 105))

elevation.set main color ((105, 105, 105))

velocity.set font color((255, 255, 255))

text.set font color ((255, 255, 255))

text3.set font color((255, 255, 255))

textd.set font color((255, 255, 255))
((255, 255, 255))

)
)
)
)

text5.set font color

rocketg.set font color((255, 255, 255))
rocketfuel.set font color((255, 255, 255))
time2.set font color((255, 255, 255))
text2.set font color((255, 255, 255))
elevation.set font color ((255, 255, 255))
box.set main color ((0, 0, 0))

box.set center pos([50, 7001])

box.set size([90, 400])
box.set font ("century")

box.update ()

screen.blit (starship, (x, Vv))
box.blit ()

pygame.display.update ()

Acknowledgment:
James Palmer clarified a few elements within the program, but the entire program was
written by Thomas Palmer.

Video Simulation:

The video enters payload characteristics similar to a small space station or a space
telescope. If the G-Force or Temperature ratings were to be exceeded by simulated figures,
then the mission would be unsuccessful, characterised by an on-screen explosion.

The video first showed a payload weight of 50 tonnes, a G-Force rating of 3G, and a
temperature rating of 2000 degrees celsius. Then the UP arrow key was pressed for ignition.
After attaining orbit, the program was shut off by pressing the esc key and interplanetary.py
was loaded. From there similar characteristics were entered along with the destination, and
a time warped simulation was shown. The video concluded by shutting off interplanetary.py
by pressing the esc key.

Bibliography:

SpaceX 2021, Starship SN10 High Altitude Test Flight, 17 March, viewed 20 July,
<https://www.youtube.com/watch?v=gA6ppby3JC8>.

https://www.youtube.com/watch?v=gA6ppby3JC8

SpaceX 2021, Starship SN15 High Altitude Test Flight, 6 May, viewed 6 May,
<https://www.youtube.com/watch?v=z9eoubnO-pE>.

SpaceX 2021, Starship SN15 Flight Test Recap, 14 May, viewed 21 July,
<https://www.youtube.com/watch?v=7CZTLogln34>.

Felix Zemdegs, F 2021, What about it!?, 14 May, viewed 21 July,
<https://www.youtube.com/user/ZSSolomon>.

C-bass Productions 2021, Starship and Super Heavy Orbital Test Animation, 5 June,
viewed 21 July, <https://www.youtube.com/watch?v=iFt LSFRFEQ&t=122s>.

Aerospace CSIS 2020, Space Environment: Total Payloads Launched by Country, viewed
22 July 2021, <https://aerospace.csis.org/data/space-environment-total-launches-

country/>.

https://www.youtube.com/watch?v=z9eoubnO-pE
https://www.youtube.com/watch?v=7CZTLogln34
https://www.youtube.com/user/ZSSolomon
https://www.youtube.com/watch?v=iFt_LsFRFEQ&t=122s
https://aerospace.csis.org/data/space-environment-total-launches-country/
https://aerospace.csis.org/data/space-environment-total-launches-country/

