
Computer Programming,

Apps & Robotics

Year 9-10

Paul Cyril

Lachlan Blake

The Heights School

Lachlan Blake and Paul Cyril

Aim of Entry
The aim of this entry is to demonstrate how a laser and light sensors can be used to test the quality
of water, and how computer processing can remove the effects of ambient light and plot the
information visually.

Scientific Purpose
Turbidity is how cloudy or hazy a body of water is, caused by tiny particles which are invisible to the

naked eye. Conventional turbidity sensors work by measuring how much light is scattered away from

a focused beam of light. Therefore, they need to be in dark, well-enclosed containers to prevent

interference from ambient light. However, this means that water must be flowing through the

sensor to get constant readings.

It is possible to minimise the effects of ambient light by taking a measurement of ambient when the

primary light source is off, and a measurement when the light source is on. By converting the

measurements to the correct scale, it’s possible to just subtract the effect of ambient light from the

readings. This means the sensor does not need mechanical parts or complicated structures and

improves the simplicity and versatility of the sensor. Transmitting data to an external device, like a

PC or even a smartphone further reduces the cost of the device.

Potential Applications
Monitoring the sources of pollution in creeks, streams and rivers requires measurements to be taken

frequently along the length of the river. This could be done through laborious monitoring by hand or

by using large numbers of cheap monitors. The photo resistors, laser, wiring, mount and Arduino for

this turbidity sensor can be brought for less than $60. This low-cost sensor could be mass produced,

then placed along lengths of a river and continuously monitor water quality. Such data could even be

used to help pinpoint dumping and leakage.

The application itself is designed to be flexible and versatile enough that other sensors can be easily

added. Instead of preforming calculations on the Arduino, the Arduino sends raw data to a flexible

desktop application on a computer. This allows diagnostics, debugging and calibrations to be done

on the computer instead, making it easier to get information.

Equipment Needed
- Windows PC with USB port

- A copy of the application we wrote as an exe file, which can be downloaded from

https://github.com/Teflae/Water-Sensor-Display/releases/tag/v1.0.

- An Arduino connected to a turbidity sensor (or applicable emulator).

Instructions
1. Place the sensor near the water body you want to test and the sensor and check that all the

wiring is correctly in place.

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

https://github.com/Teflae/Water-Sensor-Display/releases/tag/v1.0

Lachlan Blake and Paul Cyril

2. Run the application.

3. Connect the Arduino to the computer using the provided USB cable.

4. Press the ‘Connect’ button. If you have multiple COM ports check that the correct one is

selected, then click ‘Open’:

5. Calibrate the sensor by setting the ‘Calibration’ text box (which defaults at 1800) to the

number above it, so that the ‘Absorption per decimetre’ is at 0%:

6. Finally, place the sensor in the water. The black numbers are the raw values, approximately

in Lux, of the photoresistors, while the percentages are based on the calibrated value. Red is

diffusion, or how much of the laser’s light is detected as being scattered by the turbidity of

the water, whilst blue is how much of the laser’s light was absorbed, or attenuated, by the

water over 10cm:

Note: We are currently working an emulator to simulate the sensor. Instructions will be at:

https://github.com/Teflae/Water-Sensor-Display/tree/master/Emulator

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

https://github.com/Teflae/Water-Sensor-Display/tree/master/Emulator

Lachlan Blake and Paul Cyril

Code
While it’s possible to just look at a sample of water and say how turbid it is, eyesight alone cannot

determine numerically how turbid it is, and can be influenced by external light factors. To get

accurate measurements, the light levels can be measured by a light dependent resistor or

photoresistor. However, a computer’s monitor cannot directly find turbidity from the resistance of a

submerged sensor. Instead, the resistance of the photoresistors is firstly converted into voltages to

be measured by the Arduino, then sent through a USB (Serial) cable to the computer, which

processes the data into information, and sends it to the monitor.

Whilst code for some stages already exists, we had to add hundreds of lines of our own code to bring

it all together. This includes the code for the Arduino to get and send data, and a Windows

Presentation Foundation, of WPF application running on a desktop PC, as shown below:

To allow us to edit the app at the same time, we’ve separated the code for the WPF application into

multiple files to avoid editing the same file. In the following section the five most crucial files of code

we’ve made are explained in detail.

Note: As with all applications bug fixes and new features will be added, possibly causing this hard copy to

become outdated. Some unnecessary segments of code have been removed to reduce length. We upload the

complete and latest version of the code to https://github.com/Teflae/Water-Sensor-Display.

TurSensor.ino

The Arduino runs this code. It is similar in structure to C++. First some global variables are defined. Integers a

and b are the values returned by the sensors, i is used for timing purposes and increases by 1 for each

measurement, Lz is how many measurements are taken before the laser is switched on or off, Dz is the delay,

in milliseconds, between each measurement, Boolean Lo is whether the laser is on or off, and the string (text)

Data is a buffer for storing data:
int a, b;
int i = 0;
int Lz = 10;
int Dz = 10;
bool Lo = false;
String Data = "";

In the setup function, a Serial connection is established and information about the sensor is sent to the

computer (In future updates this allows the app to automatically determine what data it is getting), then

configure the Arduino’s output pins:
void setup()
{

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

https://github.com/Teflae/Water-Sensor-Display

Lachlan Blake and Paul Cyril

 Serial.begin(38400);
 Serial.println("<'rate':'0.01','data':[{'x':'time'},{'x':'water'},{'x':'control','loop':'20'},{'x':'
turbidity','var':'absorb'},{'x':'turbidity','var':'diffuse'}]>\n");
 pinMode(LED_BUILTIN, OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(7, INPUT_PULLUP);
}

The loop function is run repeatedly, taking measurements each time. It starts off by incrementing i and then

checks if it’s done enough measurements to toggle the laser.
void loop()
{
 i++;
 if (i >= Lz) {
 if (Lo) {
 Lo = false;
 digitalWrite(8, LOW);

Once it has completed taking Lz measurements with the laser off and on respectively, it sends the data inside

its buffer as a batch. Serial.println appends a new line ‘\n’ character to the end of the data, allowing the app to

separate different batches:
 Serial.println(Data);
 Data = "";
 }
 else {
 Lo = true;
 digitalWrite(8, HIGH);
 }
 i = 0;
 }

Then it waits for Dz milliseconds and takes measurements using analogRead and adds the data it receives to

the buffer. Each value is separated by the tab ‘\t’ character:
 delay(Dz);
 a = analogRead(A0);
 b = analogRead(A1);
 Data += String(millis()) + '\t' + (digitalRead(7) ? "0" : "1") + '\t' + (Lo ? "1" : "0") + '\t' + St
ring(a) + '\t' + String(b) + '\t';
}

Data.cs

This C# file defines a class (tool and/or structure) for getting, correcting and storing data from the sensor.
using System;
using System.Collections.Generic;
using System.IO.Ports;
using System.Linq;

namespace Water_Sensor
{
 class Data
 {

Serial is the object used to access the computer’s serial port, Buffer is the buffer of incoming data, Dataset

contains a list of processed data, DataType stores the information about the sensor, DataRecived is an event

that MainWindow.xaml.cs can ‘subscribe’ to, and IsConnected is used to check if the app is receiving serial

data:
 private SerialPort Serial;
 private string Buffer = "";

 public List<TurbidityDataset> Dataset = new List<TurbidityDataset>();
 public string DataType = "Unknown";

 public event EventHandler DataRecived;
 public bool IsConnected
 {
 get
 {
 return Serial.IsOpen;
 }

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

Lachlan Blake and Paul Cyril

 }

The Data function, when triggered by its parent, creates a new ‘instance’ of the class. In theory, the app can

connect to multiple sensors just by having multiple Data classes:
 public Data()
 {
 Serial = new SerialPort();
 }

The Connect function updates Serial with user entered values, subscribes to its DataReceived event and then

‘opens’ the serial port:
 public void Connect(string Port, int BaudRate)
 {
 Serial.PortName = Port;
 Serial.BaudRate = BaudRate;
 Serial.DataReceived += CheckSerial;
 Serial.Open();
 Serial.WriteLine("<In[water|water-turbidity]>");
 }

Disconnect disconnects the serial port:
 public void Disconnect()
 {
 Serial.Close();
 }

The function CheckSerial is triggered every time a new segment of data comes in, complete or in pieces:
 private void CheckSerial(object sender, SerialDataReceivedEventArgs e)
 {

It gets all the data received so far and splits it into ‘elements’ by newline characters:
 string[] input = Serial.ReadExisting().Split('\n');

Takes the incomplete data stored inside Buffer:
 input[0] = Buffer + input[0];

And sets the Buffer to its last element, which is either incomplete or empty:
 Buffer = input[input.Length - 1];

Then each element, excluding the last one, is processed:
 for (int i = 0; i < input.Length - 1; i++)
 {

If it is information (begins with ‘<’) DataType is set:
 if (input[i].First() == '<')
 {
 DataType = input[i].Substring(1, input[i].Length - 2);
 }

Else it’s data, which must be split into individual values by tab characters. Then it’s checked to see if it is

complete (has more than 100 values) and then a new TurbidityDataset class is created from the data:
 else
 {
 string[] spl = input[i].Split('\t');
 if (spl.Length >= 101) Dataset.Add(new TurbidityDataset(input[i], spl));
 }
 }

Finally, the DataRecived event is triggered allowing its subscriber, the app’s UI, to update its layout:
 DataRecived?.Invoke(this, new EventArgs());
 }
 }
}

TurbidityDataset.cs

This C# class stores and converts the raw data into information.
using System;

namespace Water_Sensor
{
 class TurbidityDataset
 {

Some constants are calculated beforehand.

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

Lachlan Blake and Paul Cyril

The Arduino can read voltages up to 5V with 10-bit resolution, therefore multiplying the Arduino’s output by

AnalogueToDigitalScale returns the voltage:
 private static double AnalogueToDigitalScale = 5.0 / 1023.0;

Through experimentation, the formula to convert resistance of LDR to a Lux approximation is 7,000,000x^-

1.233. Those numbers are defined here:
 public static double multiple = 7000000.0;
 public static double power = -1.233;

LaserMax is the user-calibrated maximum output of the laser, used for calculations:
 public static double LaserMax;

RawString is the unmodified data from the Arduino, RawData is an integer array storing the data as numbers

and TimeStamp is the time the data was recorded:
 public string RawString;
 public int[] RawData;
 public int TimeStamp;

To get the entire picture around turbidity; 'Absorb' values are from the sensor directly pointed by the laser,

measuring the absorption or attenuation of light by the water (how black it is), whilst 'Diffuse' values are from

the sensor hidden from the laser, measuring the scattering of light by the water (how cloudy it is).

To account for ambient light; 'Control' values are taken when the laser is switched off, whilst 'Laser' values

taken when the laser is on.

This means there are a total of four variables:
 public double ControlAbsorb, ControlDiffuse, LaserAbsorb, LaserDiffuse;

With which other values can be calculated from:
 public double Ambient, Absorb, Diffuse, Absorption, AbsorptionPerMeter, Diffusion;

The function TurbidityDataset does most of the post-processing. It receives the raw data from Data.cs:
 public TurbidityDataset(string raw, string[] spl)
 {
 RawString = raw;

Before the data can be used, it must be converted into integers:
 string[] StrData = spl;
 int length = StrData.Length;
 RawData = new int[length];
 for (int i = 0; i < length - 1; i++)
 {
 RawData[i] = Convert.ToInt32(StrData[i]);
 }

Then the timestamp is recorded:
 TimeStamp = RawData[0];

To get rid of some noise in our data, the data needs to be averaged. To do that, variables representing the data

(e.g. Control-Absorb, Control-Diffuse, Laser-Absorb, Laser-Diffuse) must be defined:
 int ca = 0;
 int cd = 0;
 int la = 0;
 int ld = 0;

Then a for loop can be used to sum the data. Since the laser seems fade out slightly, only the last 5 control

values are taken to prevent interference:
 for (int i = 25; i < 50; i += 5)
 {
 ca += RawData[i + 3];
 cd += RawData[i + 4];
 }

Another for loop is used to sum the values taken when the laser is on. Only the last 8 readings are taken to

prevent interference from the laser turning on:
 for (int i = 60; i < 100; i += 5)
 {
 la += RawData[i + 3];
 ld += RawData[i + 4];
 }

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

Lachlan Blake and Paul Cyril

Then to complete the averaging, the variables are divided by their respective amounts and converted to a lux

approximation using the function TurValueToLux:
 ca /= 5;
 cd /= 5;
 la /= 8;
 ld /= 8;
 ControlAbsorb = TurValueToLux(ca);
 ControlDiffuse = TurValueToLux(cd);
 LaserAbsorb = TurValueToLux(la);
 LaserDiffuse = TurValueToLux(ld);

Once converted, ambient light, absorb light and diffuse light can be calculated. The control values are

subtracted from the actual readings, removing ambient light:
 Ambient = (ControlAbsorb + ControlDiffuse) / 2;
 Absorb = LaserAbsorb - ControlAbsorb;
 Diffuse = LaserDiffuse - ControlDiffuse;

Once the user calibrates the sensor, some easy-to-read percentages can be calculated:
 Absorption = 1 - Absorb / LaserMax;
 Diffusion = LaserDiffuse / LaserMax;
 }

The function TurValueToLux is defined down here so that it can be used repeatedly. It converts the Arduino’s

analogue readings to a Lux approximation, which makes subtracting ambient light possible.
 private static double TurValueToLux(int Analogue)
 {
 double RVoltage = Analogue * AnalogueToDigitalScale;
 double LDRVoltage = 5 - RVoltage;
 double LDRResistance = LDRVoltage / RVoltage * 10000;
 return multiple * Math.Pow(LDRResistance, power);
 }
 }
}

MainWindow.xaml.cs

This C# file initialises the app’s user interface, listens for DataRecived events, updates the UI with information

from individual TurbidityDatasets and then plots the data on a graph:
using System;
using System.Collections.Generic;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;
using System.Windows.Shapes;

namespace Water_Sensor
{

In this class, the variables and storage methods which are used by multiple functions are defined:
 public partial class MainWindow : Window
 {

Data Sensor allows the program to connect with the data from the sensor. Count is the measurement of how

many datasets there are from the sensor. Diffuse_Data_Storage and Absorb_Data_Storage are lists where the

data from the sensor gets stored in for the graph to read and display. The integer variable

TurbidityGraphDataLength is how many data points are displayed at one time on the graph:
 private Data Sensor;
 private int Count = 0;
 private List<double> Diffuse_Data_Storage = new List<double>();
 private List<double> Absorb_Data_Storage = new List<double>();
 private int TurbidityGraphDataLength = 100;

MainWindow is triggered when the application starts and runs the function to draw the graph axis and creates

the Data class to access the sensor. It ‘subscribes’, or listens for Sensor’s DataRecived event:
 public MainWindow()
 {
 InitializeComponent();
 Draw_Graph_Axis();
 Sensor = new Data();

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

Lachlan Blake and Paul Cyril

 Sensor.DataRecived += DataRecived;
 }

ConnectButton_Click is triggered when the ‘Connect’ button is clicked. It first checks whether the sensor is

connected to the app. If it is still connected, then it changes the connect button’s text back to “Connect” and

disconnects the sensor from the serial port.
 private void ConnectButton_Click(object sender, RoutedEventArgs e)
 {
 if (Sensor.IsConnected)
 {
 Sensor.Disconnect();
 ConnectButton.Content = "Connect";
 OutputTextBlock.Text = "";
 }

Else it opens the serial connection dialogue box (code on GitHub):
 else
 {
 SerialConnectionDialog Dialog = new SerialConnectionDialog();
 Dialog.Owner = this;
 bool IsAccepted = (bool)Dialog.ShowDialog();

If the dialogue box had been accepted (e.g. the user pressed ‘Open’), it connects to the sensor to the specified

port with the specified Baud Rate and then changes the button’s text to “Disconnect”. This code is nested

inside a try loop, which instead of letting the application crash unexpectedly, it ‘catches’ any error and outputs

an error message:
 if (IsAccepted)
 {
 try
 {
 Sensor.Connect(Dialog.Port, Dialog.BaudRate);
 ConnectButton.Content = "Disconnect";
 }
 catch (Exception ex)
 {
 OutputTextBlock.Text += ex.Message + '\n';
 }
 }
 }
 }

DataRecived is triggered once the data has been processed:
 private void DataRecived(object sender, EventArgs e)
 {
 this.Dispatcher.Invoke(() =>
 {
 int l = Sensor.Dataset.Count;

For each new dataset, it adds Absorption and Diffusion values to its own lists to plot them on a graph:
 for (int i = Count; i < l; i++)
 {
 Diffuse_Data_Storage.Add(Convert.ToDouble(Sensor.Dataset[i].Diffusion));
 Absorb_Data_Storage.Add(Convert.ToDouble(Sensor.Dataset[i].Absorption));

Then checks whether the content in the list exceeded the length of the graph, and removes extras as

necessary:
 if (Diffuse_Data_Storage.Count > TurbidityGraphDataLength)
 {
 Diffuse_Data_Storage.RemoveAt(0);
 Absorb_Data_Storage.RemoveAt(0);
 };

Then converts the Absorption, Diffusion, Diffuse, Absorb and Ambient data to string formats to be displayed in

their corresponding TextBlocks:
 PassiveTextBlock.Text = String.Format("({0:0.000})", Sensor.Dataset[i].Diffuse);
 ActiveTextBlock.Text = String.Format("({0:0.000})", Sensor.Dataset[i].Absorb);

 AmbientTextBlock.Text = String.Format("({0:0.000})", Sensor.Dataset[i].Ambient);

 AbsorbtionTextBlock.Text = String.Format("{0:0.0%}",Sensor.Dataset[i].Absorption);
 DiffusionTextBlock.Text = String.Format("{0:0.0%}", Sensor.Dataset[i].Diffusion);
 }

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

Lachlan Blake and Paul Cyril

It then checks to see if new data actually came, before triggering DrawTurbidityGraph:
 if (Count < l) DrawTurbidityGraph();
 Count = l;
 });
 }

When DrawTurbidityGraph is triggered, it redraws the points on the turbidity graph. It first pre-calculates

margins and chart area for performance; Margin is the spacing around the chart area from the edge of the

canvas. Xmin and ymin are the minimum plotting distance that the points can be placed along the x and y axis.

Xmax and ymax are the maximum plotting distance that the points can be places along the x and y axis. Xarea

and yarea are the width and height of the chart area. Step is the spacing between each point along the x axis:
 private void DrawTurbidityGraph()
 {
 double margin = 10;
 double xmin = margin;
 double xmax = TurbidityGraph.ActualWidth - margin;
 double xarea = TurbidityGraph.ActualWidth - 2 * margin;
 double ymin = margin;
 double ymax = TurbidityGraph.ActualHeight - margin;
 double yarea = TurbidityGraph.ActualHeight - 2 * margin;

 double step = xarea / TurbidityGraphDataLength;

Then the polyline colours, variables and points are calculated and redrawn. DiffuseColour and AbsorbColour

are the colours of the line plotted for their data points. x is the x value for the points. Diffuse_Points and

Absorb_Points are the points which are plotted on the graph. Diffuse_polyline and Absorb_polyline are the

elements drawn. Draw_Graph_Axis draws the grid and axis:
 Brush DiffuseColour = Brushes.Red;
 Brush AbsorbColour = Brushes.Blue;
 double x = xmin;
 Polyline Diffuse_polyline = new Polyline();
 Polyline Absorb_polyline = new Polyline();
 TurbidityGraph.Children.Clear();
 PointCollection Diffuse_points = new PointCollection();
 PointCollection Absorb_points = new PointCollection();
 Draw_Graph_Axis();

 int length = Diffuse_Data_Storage.Count;

A for loop is used to read the data stored in Diffuse_Data_Storage and Absorb_Data_Storage lists, verify the

data and then convert them into Points to be drawn on the graph:
 for (int i = 0; i < length; i++)
 {
 double Diffuse_y = yarea - Diffuse_Data_Storage[i] * yarea;
 double Absorb_y = yarea - Absorb_Data_Storage[i] * yarea;
 if (Diffuse_y < ymin) Diffuse_y = ymin;
 if (Diffuse_y > ymax) Diffuse_y = ymax;
 Diffuse_points.Add(new Point(x, Diffuse_y));
 if (Absorb_y < ymin) Absorb_y = ymin;
 if (Absorb_y > ymax) Absorb_y = ymax;
 Absorb_points.Add(new Point(x, Absorb_y));
 x += step;
 }

Finally, the absorb and diffuse lines are drawn on the graph:
 Diffuse_polyline.StrokeThickness = 2;
 Diffuse_polyline.Stroke = DiffuseColour;
 Diffuse_polyline.Points = Diffuse_points;

 TurbidityGraph.Children.Add(Diffuse_polyline);
 Absorb_polyline.StrokeThickness = 2;
 Absorb_polyline.Stroke = AbsorbColour;
 Absorb_polyline.Points = Absorb_points;

 TurbidityGraph.Children.Add(Absorb_polyline);
 }

When triggered, Draw_Graph_Axis draws the grid and axis for the graph. Again, it first pre-calculates margins

and chart area for performance:
 private void Draw_Graph_Axis()

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

Lachlan Blake and Paul Cyril

 {
 double margin = 10;
 double xmin = margin;
 double xmax = TurbidityGraph.ActualWidth - margin;
 double xarea = TurbidityGraph.ActualWidth - 2 * margin;
 double ymin = margin;
 double ymax = TurbidityGraph.ActualHeight - margin;
 double yarea = TurbidityGraph.ActualHeight - 2 * margin;
 double xstep = xarea / 10;
 double ystep = yarea / 10;

Then it draws the X and Y axis for the graph:
 //Make the axis
 GeometryGroup axis_geom = new GeometryGroup();
 axis_geom.Children.Add(new LineGeometry(
 new Point(xmin, ymax), new Point(xmax, ymax)));
 axis_geom.Children.Add(new LineGeometry(
 new Point(xmin, ymax), new Point(xmin, ymin)));

 Path axis_path = new Path();
 axis_path.StrokeThickness = 1;
 axis_path.Stroke = Brushes.Black;
 axis_path.Data = axis_geom;

 TurbidityGraph.Children.Add(axis_path);

Then it draws the horizontal grid lines using another geometry group:
 // Make the horizontal grid.
 GeometryGroup xgrid_geom = new GeometryGroup();
 for (double x = xmin + xstep; x <= xarea; x += xstep)
 {
 xgrid_geom.Children.Add(new LineGeometry(
 new Point(x, ymin),
 new Point(x, ymax)));
 }

 Path xgrid_path = new Path();
 xgrid_path.StrokeThickness = 1;
 xgrid_path.Stroke = Brushes.Gray;
 xgrid_path.Data = xgrid_geom;

 TurbidityGraph.Children.Add(xgrid_path);

And finally, it draws the vertical grid lines:
 // Make the vertical grid.
 GeometryGroup ygrid_geom = new GeometryGroup();
 for (double y = ymin + ystep; y <= yarea; y += ystep)
 {
 ygrid_geom.Children.Add(new LineGeometry(
 new Point(xmin, y),
 new Point(xmax, y)));
 }

 Path ygrid_path = new Path();
 ygrid_path.StrokeThickness = 1;
 ygrid_path.Stroke = Brushes.Gray;
 ygrid_path.Data = ygrid_geom;

 TurbidityGraph.Children.Add(ygrid_path);
 }

The function LaserMaxTuningTextBox_TextChanged, is triggered by changing the calibration TextBox. Using a

try loop and an if statement for input validation, it modifies TurbidityDataset’s LaserMax property, calibrating

the app.
 private void LaserMaxTuningTextBox_TextChanged(object sender, TextChangedEventArgs e)
 {
 try
 {
 double lmt = Convert.ToDouble(LaserMaxTuningTextBox.Text);
 if (lmt > 100 && lmt < 100000)

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

Lachlan Blake and Paul Cyril

 {
 TurbidityDataset.LaserMax = lmt;
 }
 }
 catch (Exception) { }
 }

TurbidityGraph_SizeChanged is triggered when the size of the graph changes, allowing it to be redrawn to fit:
 private void TurbidityGraph_SizeChanged(object sender, SizeChangedEventArgs e)
 {
 DrawTurbidityGraph();
 }
 }
}

MainWindow.xaml

This xaml file is the design aspect for the application.
<Window x:Class="Water_Sensor.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:Water_Sensor"
 mc:Ignorable="d"

First, it sets the title as well as default sizes of the application window where Height is the height of the

window and Width is the width of the window. The min variations determine the minimum size for the

window. All the code for the application is located inside the applications Grid:
 Title="Water Sensor (--Turbidity)" Height="650" Width="1200" WindowState="Normal"
MinWidth="600" MinHeight="400">
 <Grid>

Then it defines the rows and columns upon which elements will be aligned.
 <Grid.RowDefinitions>
 <RowDefinition Height="150"/>
 <RowDefinition Height="1*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="200"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

Next, it creates button to connect to sensor which triggers the void “ConnectButton_Click” when clicked which

triggers in MainWindow.xmal.cs. For each element in the design, its location, type, style and size are specified

so that the program knows where to load everything and what they look like when the application loads.
<Button x:Name="ConnectButton" HorizontalAlignment="Stretch" VerticalAlignment="Top" Margin="4,4,0,0"
Click="ConnectButton_Click">Connect</Button>
 <Button x:Name="TestButton" HorizontalAlignment="Left" VerticalAlignment="Bottom"
Margin="4,4,0,4" Click="TestButton_Click" Visibility="Hidden">$Test_Get</Button>

And then defines the text block which displays the status of the sensor.
 <TextBlock x:Name="StatusTextBlock" TextWrapping="Wrap" Margin="4,28,4,4" />

To support multiple sensors in the future, each sensor will have its own grid inside a stackpanel:
 <StackPanel Grid.Column="1" Grid.RowSpan="2">

TurbidityGrid is the grey box that contains all the information from the sensor and graph. The colour, size and

layout of the grid is defined first:
 <Grid x:Name="TurbidityGrid" Height="500" Margin="4,4,4,4">
 <Grid.Background>
 <SolidColorBrush Color="Black" Opacity="0.05"/>
 </Grid.Background>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="80"/>
 <ColumnDefinition Width="120"/>
 <ColumnDefinition Width="1*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="32"/>
 <RowDefinition Height="48"/>

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

Lachlan Blake and Paul Cyril

 <RowDefinition Height="32"/>
 <RowDefinition Height="48"/>
 <RowDefinition Height="32"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="1*"/>
 </Grid.RowDefinitions>

Then it defines the TextBlock labelling the sensor the grid is displaying (a.k.a. turbidity). In addition, defines all

the text blocks which display the data. E.g. ambient label, ambient data, passive label, active label, diffusion

data, absorption data and passive data:
 <TextBlock x:Name="TurbidityLabelTextBlock" Grid.Row="0" Grid.Column="0"
Grid.ColumnSpan="2" HorizontalAlignment="Stretch" VerticalAlignment="Center" FontSize="24"
Padding="4,4,2,2">Turbidity</TextBlock>
 <TextBlock x:Name="AmbientLabelTextBlock" Grid.Row="1" Grid.Column="0"
Grid.ColumnSpan="1" Margin="4,2,2,2" VerticalAlignment="Center">Ambient</TextBlock>
 <TextBlock x:Name="AmbientTextBlock" FontSize="20" Grid.Row="1" Grid.Column="1"
Grid.ColumnSpan="1" Margin="2,2,2,2" HorizontalAlignment="Right"/>

It defines labels for the diffusion and absorption data:
 <TextBlock x:Name="PassiveLabelTextBlock" FontStretch="Normal" TextWrapping="Wrap"
Grid.Row="2" Grid.Column="0" Grid.ColumnSpan="1" Grid.RowSpan="2" Margin="4,2,2,2"
VerticalAlignment="Center" >Diffusion at 50mm</TextBlock>
 <TextBlock x:Name="ActiveLabelTextBlock" TextWrapping="Wrap" Grid.Row="4"
Margin="4,2,2,4" Grid.RowSpan="2" VerticalAlignment="Center">Absorption per decimeter</TextBlock>

Then it defines TextBlocks which displays diffusion, absorption and passive data:
 <TextBlock x:Name="DiffusionTextBlock" FontSize="36" Grid.Row="2" Grid.RowSpan="1"
Grid.Column="1" Grid.ColumnSpan="1" Margin="2,2,2,2" Foreground="Red"
HorizontalAlignment="Right"></TextBlock>
 <TextBlock x:Name="AbsorbtionTextBlock" FontSize="36" Grid.Row="4" Grid.Column="1"
Margin="2,2,2,4" TextAlignment="Left" LineHeight="72" Foreground="Blue"
HorizontalAlignment="Right"></TextBlock>
 <TextBlock x:Name="PassiveTextBlock" FontSize="20" Grid.Row="3" Grid.RowSpan="1"
Grid.Column="1" Grid.ColumnSpan="1" Margin="2,0,2,4" HorizontalAlignment="Right"></TextBlock>
 <TextBlock x:Name="ActiveTextBlock" FontSize="20" Grid.Row="5" Grid.Column="1"
Margin="2,0,2,4" TextAlignment="Left" LineHeight="72" HorizontalAlignment="Right"></TextBlock>

It also defines TextBox to calibrate the sensor as well as an associated label. When the TextBox is edited it

Triggers LaserMaxTuningTextBox_TextChanged function.
 <TextBlock x:Name="LaserMaxTuningLabelTextBlock" TextWrapping="Wrap" Grid.Row="6"
Margin="4,2,2,4" Grid.RowSpan="1" VerticalAlignment="Center">Calibration</TextBlock>
 <TextBox x:Name="LaserMaxTuningTextBox" Grid.Row="6" Margin="8,8,8,8" Grid.RowSpan="1"
Grid.Column="1" TextChanged="LaserMaxTuningTextBox_TextChanged">1800</TextBox>

And finally, it defines a canvas element, on which a graph can be drawn. When the size of this element is

changed, it Triggers the TurbidityGraph_SizeChanged function:
 <Canvas x:Name="TurbidityGraph" Grid.RowSpan="8" Grid.ColumnSpan="1" Grid.Column="2"
SizeChanged="TurbidityGraph_SizeChanged"/>
 </Grid>
 </StackPanel>
 </Grid>
</Window>

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

Lachlan Blake and Paul Cyril

Photos, Screenshots and Videos

Figure 1: Showing the blue and black sensor constructed, the voltage dividers on a breadboard, and an Arduino.

Figure 2: Showing the sensor in operation. The laser is on the right.

Figure 3: A screenshot of the app running whilst plotting data from the sensor. Whilst the water was not technically turbid,
to show the operation of the app the sensor was placed in a container of water flour. The container was shaken twice, first

gently and then roughly. This unsettled the flour, causing two corresponding peaks on the graph.

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

Lachlan Blake and Paul Cyril

Figure 4: The entire system. Left: the sensor measuring turbidity and the application plotting it on a graph. Right: the
system running after the light was turned on immediately after taking the photo on the left. Notice that there is no sudden
change in the graph as the light was turned on.

Bibliography
Mangal, K., NA. C# List Class. [Online]

Available at: https://www.geeksforgeeks.org/c-sharp-list-class/

[Accessed 18 July 2020].

Microsoft, 2020. How to publish events that conform to .NET Guidelines (C# Programming Guide).

[Online]

Available at: https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-

publish-events-that-conform-to-net-framework-guidelines

[Accessed 18 July 2020].

Microsoft, 2020. SerialPort Class. [Online]

Available at: https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=dotnet-

plat-ext-3.1

[Accessed 12 July 2020].

Microsoft, 2020. Windows Presentation Foundation. [Online]

Available at: https://docs.microsoft.com/en-us/dotnet/framework/wpf/

[Accessed 6 July 2020].

mybotic, 2020. Laser Diode Module Tutorial. [Online]

Available at: https://www.instructables.com/id/Laser-Diode-Module-Tutorial/

[Accessed 6 July 2020].

net-Informations, NA. Rounding Number to 2 Decimal Places. [Online]

Available at: http://net-informations.com/q/faq/round.html

[Accessed 19 jULY 2020].

RodStevens, 2014. Graphing Difficulties. [Online]

Available at: http://csharphelper.com/blog/2014/09/draw-graph-wpf-c/

[Accessed 15 July 2020].

Water Science School, 2020. Turbidity and Water. [Online]

Available at: https://www.usgs.gov/special-topic/water-science-school/science/turbidity-and-

water?qt-science_center_objects=0#qt-science_center_objects

[Accessed 21 July 2020].

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

Lachlan Blake and Paul Cyril

Wikipedia, 2020. Nephelometer. [Online]

Available at: https://en.wikipedia.org/wiki/Nephelometer

[Accessed 21 July 2020].

Williams, D., 2015. Design a Luxmeter Using a Light Dependent Resistor. [Online]

Available at: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-

resistor/

[Accessed 17 July 2020].

Acknowledgements
Thank you to Tim Trainor and Tom Cridland from The Heights School for your assistance, support

and encouragement towards us throughout the project.

20
20

 O
lip

ha
nt

 Sc
ien

ce
 A

w
ard

s

St
ud

en
t W

ork
 -

DO N
OT C

OPY

